【深度学习】MAT,Image Inpainting,代码实战,接口直接用,水印去除,水印Inpaint
创始人
2024-12-29 07:40:48
0

https://github.com/fenglinglwb/mat

文章目录

  • 基础镜像
  • fastapi
  • 总结
  • 图片批量访问去除水印的请求代码
  • 使用感受

基础镜像

docker run -it -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-xformers bash 
git clone https://github.com/fenglinglwb/MAT.git   cd MAT/  pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple 
apt-get update && apt-get install ffmpeg libsm6 libxext6  -y 

一系列操作后得到一个环境镜像,FFHQ_512.pkl在其中:

docker push kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat 

可以用这个镜像尝试inpaint效果:

docker run -it -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat bash 

执行inpaint:

cd /workspace/MAT  python generate_image.py --network pretrained/FFHQ_512.pkl --dpath images --mpath masks --outdir samples 

原图
在这里插入图片描述
mask图:
在这里插入图片描述
结果去除图:
在这里插入图片描述

fastapi

安装了一些fastapi的环境:

kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-apibase 

进而写dockerfile:

FROM kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-apibase EXPOSE 7860 ENTRYPOINT cd /workspace/MAT/ && python /workspace/MAT/mianfastapi.py 

build:

docker build  -f Dockerfile1 . -t kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-api 

只需要执行这个镜像就可以启动服务:

docker run -d -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-api  

在这里插入图片描述

总结

启动服务:

docker run -d -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-api  

访问服务:

import requests  url = "http://10.136.19.26:7898/inpaint" image_path = "image.jpg" mask_path = "mask.jpg"  # 读取图像和掩码文件 with open(image_path, "rb") as img_file, open(mask_path, "rb") as mask_file:     files = {         "image": img_file,         "mask": mask_file     }      # 发送POST请求     response = requests.post(url, files=files)      # 检查响应状态码     if response.status_code == 200:         # 保存生成的图像         with open("output.png", "wb") as out_file:             out_file.write(response.content)         print("生成的图像已保存为 output.png")     else:         print(f"请求失败,状态码: {response.status_code}")         print(response.text)  

图片批量访问去除水印的请求代码

import base64 import io import os import traceback  import requests import cv2 import numpy as np import json from PIL import Image from PIL import ImageDraw import numpy as np import cv2 from tqdm import tqdm import json   def listPathAllfiles(dirname):     result = []     for maindir, subdir, file_name_list in os.walk(dirname):         for filename in file_name_list:             apath = os.path.join(maindir, filename)             result.append(apath)     return result   url = "http://10.136.19.26:7898/inpaint" # image_path = "image.jpg" # mask_path = "mask.jpg" # # # 读取图像和掩码文件 # with open(image_path, "rb") as img_file, open(mask_path, "rb") as mask_file: #     files = { #         "image": img_file, #         "mask": mask_file #     } # #     # 发送POST请求 #     response = requests.post(url, files=files) # #     # 检查响应状态码 #     if response.status_code == 200: #         # 保存生成的图像 #         with open("output.png", "wb") as out_file: #             out_file.write(response.content) #         print("生成的图像已保存为 output.png") #     else: #         print(f"请求失败,状态码: {response.status_code}") #         print(response.text)   src = r"/ssd/xiedong/xiezhenceshi/xiezhen_datasets" save_img_dst_output_inpaint_alpha = r"/ssd/xiedong/xiezhenceshi/inpaint_alpha" os.makedirs(save_img_dst_output_inpaint_alpha, exist_ok=True) files = listPathAllfiles(src) files.sort() files = [file for file in files if file.endswith(".jpg")]  for src_image_file in tqdm(files):     try:         ocr_ret_file = src_image_file.replace(".jpg", ".json")         output_image_file_alpha = src_image_file.replace(src, save_img_dst_output_inpaint_alpha)         if not os.path.exists(ocr_ret_file):             print(f"ocr_ret_file not exists: {ocr_ret_file}")             continue         if os.path.exists(output_image_file_alpha):             print(f"output_image_file_alpha exists: {output_image_file_alpha}")             continue         output_image_file_alpha_father = os.path.dirname(output_image_file_alpha)         os.makedirs(output_image_file_alpha_father, exist_ok=True)          # 造一个mask图片在本地         ocr_json_data = json.load(open(ocr_ret_file, "r", encoding="utf-8"))         image = cv2.imread(src_image_file)         # 只要中心512*512的图         image_zitu = image[image.shape[0] // 2 - 256:image.shape[0] // 2 + 256,                      image.shape[1] // 2 - 256:image.shape[1] // 2 + 256]         mask = np.zeros(image.shape, dtype=np.uint8)         for item in ocr_json_data:             box = item[0]             cv2.fillPoly(mask, np.array([box], dtype=np.int32), (255, 255, 255))         # 只要中心512*512的图         mask_zitu = mask[mask.shape[0] // 2 - 256:mask.shape[0] // 2 + 256,                     mask.shape[1] // 2 - 256:mask.shape[1] // 2 + 256]         # 取反mask_zitu的选择         mask_zitu = cv2.bitwise_not(mask_zitu)         src_image_file_rb = cv2.imencode('.jpg', image_zitu)[1].tobytes()         mask_file_rb = cv2.imencode('.jpg', mask_zitu)[1].tobytes()          files = {             "image": src_image_file_rb,             "mask": mask_file_rb         }          # 发送POST请求         response = requests.post(url, files=files)          # 检查响应状态码         if response.status_code == 200:             # 保存生成的图像             # with open("output.png", "wb") as out_file:             #     out_file.write(response.content)             # print("生成的图像已保存为 output.png")             image_inpaint = Image.open(io.BytesIO(response.content)).convert('RGB')             image_inpaint_cv2 = np.array(image_inpaint)             image_inpaint_cv2 = cv2.cvtColor(image_inpaint_cv2, cv2.COLOR_RGB2BGR)              # 贴回到原图             image[image.shape[0] // 2 - 256:image.shape[0] // 2 + 256, \             image.shape[1] // 2 - 256:image.shape[1] // 2 + 256] = image_inpaint_cv2              cv2.imwrite(output_image_file_alpha, image)         else:             print(f"请求失败,状态码: {response.status_code}")             print(response.text)     except:         traceback.print_exc()  

使用感受

不行,基本传统的inpaint就是很垃圾,效果不行无法投入使用,生成还得看StableDiffusion,但StableDiffusion就是很慢,如果有希望把LCM和小的SD模型用起来,就很nice了。

相关内容

热门资讯

专业讨论!德扑之星真破解套路(... 专业讨论!德扑之星真破解套路(辅助挂)软件透明挂(有挂了解)-哔哩哔哩;人气非常高,ai更新快且高清...
每日必看!智星德州菠萝外挂检测... 每日必看!智星德州菠萝外挂检测(辅助挂)软件透明挂(有挂教学)-哔哩哔哩1、玩家可以在智星德州菠萝外...
透视透明挂!轰趴十三水有后台(... 轰趴十三水有后台赢率提升策略‌;透视透明挂!轰趴十三水有后台(辅助挂)软件透明挂(有挂详情)-哔哩哔...
发现玩家!德扑ai助手软件(辅... 发现玩家!德扑ai助手软件(辅助挂)透视辅助(有挂教学)-哔哩哔哩;玩家在德扑ai助手软件中需先进行...
一分钟了解!x-poker辅助... 一分钟了解!x-poker辅助软件(辅助挂)辅助透视(有挂攻略)-哔哩哔哩1、每一步都需要思考,不同...
一分钟揭秘!德州最新辅助器(辅... 一分钟揭秘!德州最新辅助器(辅助挂)透视辅助(有挂攻略)-哔哩哔哩;德州最新辅助器最新版本免费下载安...
玩家攻略推荐!德州辅助(辅助挂... 玩家攻略推荐!德州辅助(辅助挂)辅助透视(有挂了解)-哔哩哔哩是由北京得德州辅助黑科技有限公司精心研...
揭秘真相!pokernow德州... 《揭秘真相!pokernow德州(辅助挂)辅助透视(有挂介绍)-哔哩哔哩》 pokernow德州软件...
五分钟了解!德州之星辅助器(辅... 五分钟了解!德州之星辅助器(辅助挂)辅助透视(有挂透明)-哔哩哔哩1、很好的工具软件,可以解锁游戏的...
推荐一款!pokermaste... 1、推荐一款!pokermaster有外挂(辅助挂)透视辅助(有挂教学)-哔哩哔哩;详细教程。2、p...