【深度学习】MAT,Image Inpainting,代码实战,接口直接用,水印去除,水印Inpaint
创始人
2024-12-29 07:40:48
0

https://github.com/fenglinglwb/mat

文章目录

  • 基础镜像
  • fastapi
  • 总结
  • 图片批量访问去除水印的请求代码
  • 使用感受

基础镜像

docker run -it -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-xformers bash 
git clone https://github.com/fenglinglwb/MAT.git   cd MAT/  pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple 
apt-get update && apt-get install ffmpeg libsm6 libxext6  -y 

一系列操作后得到一个环境镜像,FFHQ_512.pkl在其中:

docker push kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat 

可以用这个镜像尝试inpaint效果:

docker run -it -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat bash 

执行inpaint:

cd /workspace/MAT  python generate_image.py --network pretrained/FFHQ_512.pkl --dpath images --mpath masks --outdir samples 

原图
在这里插入图片描述
mask图:
在这里插入图片描述
结果去除图:
在这里插入图片描述

fastapi

安装了一些fastapi的环境:

kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-apibase 

进而写dockerfile:

FROM kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-apibase EXPOSE 7860 ENTRYPOINT cd /workspace/MAT/ && python /workspace/MAT/mianfastapi.py 

build:

docker build  -f Dockerfile1 . -t kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-api 

只需要执行这个镜像就可以启动服务:

docker run -d -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-api  

在这里插入图片描述

总结

启动服务:

docker run -d -p 7898:7860 --gpus device=3 kevinchina/deeplearning:pytorch2.3.0-cuda12.1-cudnn8-devel-mat-api  

访问服务:

import requests  url = "http://10.136.19.26:7898/inpaint" image_path = "image.jpg" mask_path = "mask.jpg"  # 读取图像和掩码文件 with open(image_path, "rb") as img_file, open(mask_path, "rb") as mask_file:     files = {         "image": img_file,         "mask": mask_file     }      # 发送POST请求     response = requests.post(url, files=files)      # 检查响应状态码     if response.status_code == 200:         # 保存生成的图像         with open("output.png", "wb") as out_file:             out_file.write(response.content)         print("生成的图像已保存为 output.png")     else:         print(f"请求失败,状态码: {response.status_code}")         print(response.text)  

图片批量访问去除水印的请求代码

import base64 import io import os import traceback  import requests import cv2 import numpy as np import json from PIL import Image from PIL import ImageDraw import numpy as np import cv2 from tqdm import tqdm import json   def listPathAllfiles(dirname):     result = []     for maindir, subdir, file_name_list in os.walk(dirname):         for filename in file_name_list:             apath = os.path.join(maindir, filename)             result.append(apath)     return result   url = "http://10.136.19.26:7898/inpaint" # image_path = "image.jpg" # mask_path = "mask.jpg" # # # 读取图像和掩码文件 # with open(image_path, "rb") as img_file, open(mask_path, "rb") as mask_file: #     files = { #         "image": img_file, #         "mask": mask_file #     } # #     # 发送POST请求 #     response = requests.post(url, files=files) # #     # 检查响应状态码 #     if response.status_code == 200: #         # 保存生成的图像 #         with open("output.png", "wb") as out_file: #             out_file.write(response.content) #         print("生成的图像已保存为 output.png") #     else: #         print(f"请求失败,状态码: {response.status_code}") #         print(response.text)   src = r"/ssd/xiedong/xiezhenceshi/xiezhen_datasets" save_img_dst_output_inpaint_alpha = r"/ssd/xiedong/xiezhenceshi/inpaint_alpha" os.makedirs(save_img_dst_output_inpaint_alpha, exist_ok=True) files = listPathAllfiles(src) files.sort() files = [file for file in files if file.endswith(".jpg")]  for src_image_file in tqdm(files):     try:         ocr_ret_file = src_image_file.replace(".jpg", ".json")         output_image_file_alpha = src_image_file.replace(src, save_img_dst_output_inpaint_alpha)         if not os.path.exists(ocr_ret_file):             print(f"ocr_ret_file not exists: {ocr_ret_file}")             continue         if os.path.exists(output_image_file_alpha):             print(f"output_image_file_alpha exists: {output_image_file_alpha}")             continue         output_image_file_alpha_father = os.path.dirname(output_image_file_alpha)         os.makedirs(output_image_file_alpha_father, exist_ok=True)          # 造一个mask图片在本地         ocr_json_data = json.load(open(ocr_ret_file, "r", encoding="utf-8"))         image = cv2.imread(src_image_file)         # 只要中心512*512的图         image_zitu = image[image.shape[0] // 2 - 256:image.shape[0] // 2 + 256,                      image.shape[1] // 2 - 256:image.shape[1] // 2 + 256]         mask = np.zeros(image.shape, dtype=np.uint8)         for item in ocr_json_data:             box = item[0]             cv2.fillPoly(mask, np.array([box], dtype=np.int32), (255, 255, 255))         # 只要中心512*512的图         mask_zitu = mask[mask.shape[0] // 2 - 256:mask.shape[0] // 2 + 256,                     mask.shape[1] // 2 - 256:mask.shape[1] // 2 + 256]         # 取反mask_zitu的选择         mask_zitu = cv2.bitwise_not(mask_zitu)         src_image_file_rb = cv2.imencode('.jpg', image_zitu)[1].tobytes()         mask_file_rb = cv2.imencode('.jpg', mask_zitu)[1].tobytes()          files = {             "image": src_image_file_rb,             "mask": mask_file_rb         }          # 发送POST请求         response = requests.post(url, files=files)          # 检查响应状态码         if response.status_code == 200:             # 保存生成的图像             # with open("output.png", "wb") as out_file:             #     out_file.write(response.content)             # print("生成的图像已保存为 output.png")             image_inpaint = Image.open(io.BytesIO(response.content)).convert('RGB')             image_inpaint_cv2 = np.array(image_inpaint)             image_inpaint_cv2 = cv2.cvtColor(image_inpaint_cv2, cv2.COLOR_RGB2BGR)              # 贴回到原图             image[image.shape[0] // 2 - 256:image.shape[0] // 2 + 256, \             image.shape[1] // 2 - 256:image.shape[1] // 2 + 256] = image_inpaint_cv2              cv2.imwrite(output_image_file_alpha, image)         else:             print(f"请求失败,状态码: {response.status_code}")             print(response.text)     except:         traceback.print_exc()  

使用感受

不行,基本传统的inpaint就是很垃圾,效果不行无法投入使用,生成还得看StableDiffusion,但StableDiffusion就是很慢,如果有希望把LCM和小的SD模型用起来,就很nice了。

相关内容

热门资讯

透视脚本!德扑圈有透视吗(透视... 透视脚本!德扑圈有透视吗(透视)私人局透视(一贯是真的有挂);德扑圈有透视吗辅助器中分为三种模型:德...
透视app!wepoker辅助... 透视app!wepoker辅助透视(透视)htx矩阵wepoker辅助(原来存在有挂)1、不需要AI...
透视游戏!wpk透视怎么安装(... 透视游戏!wpk透视怎么安装(透视)辅助软件(一直是真的有挂)1、在wpk透视怎么安装ai机器人技巧...
透视透视挂!破解辅助插件wep... 透视透视挂!破解辅助插件wepoker(透视)辅助软件教程(确实是真的有挂);1、下载好破解辅助插件...
透视肯定!德普之星透视辅助(透... 透视肯定!德普之星透视辅助(透视)辅助软件(竟然真的是有挂);进入游戏-大厅左侧-新手福利-激活码辅...
透视系统!wpk透视插件(透视... 透视系统!wpk透视插件(透视)如何下载透视版(切实有挂);1、该软件可以轻松地帮助玩家将wpk透视...
透视辅助!wepoker免费脚... 透视辅助!wepoker免费脚本咨询(透视)wepoker私人局透视插件(果然真的是有挂)1、每一步...
透视总结!wejoker私人辅... 透视总结!wejoker私人辅助软件(透视)手机版辅助(一直真的是有挂);1、游戏颠覆性的策略玩法,...
透视工具!德扑圈透视(透视)的... 透视工具!德扑圈透视(透视)的辅助工具介绍(本来是真的有挂)1、德扑圈透视系统规律教程、德扑圈透视辅...
透视有挂!wpk透视工作室(透... 透视有挂!wpk透视工作室(透视)透视辅助(本来是真的有挂)1、wpk透视工作室系统规律教程、wpk...