组队学习——支持向量机
创始人
2024-12-26 22:10:15
0

本次学习支持向量机部分数据如下所示

IDmasswidthheightcolor_scorefruit_namekind

 其中ID:1-59是对应训练集和验证集的数据,60-67是对应测试集的数据,其中水果类别一共有四类包括apple、lemon、orange、mandarin。要求根据1-59的数据集的自变量(mass、width、height、color_score)和因变量(kind),去预测60-67的数据水果种类

一、导入支持向量机和其他的库

import numpy as np from scipy import stats from sklearn.model_selection import train_test_split import pandas as pd   from sklearn import svm   from sklearn.metrics import accuracy_score

二、读取数据

# 设置文件路径   file_path = 'E:\\Jupyter Workspace\\数学建模\\多分类水果数据.csv'   # 使用 pandas 的 read_csv 函数读取 CSV 文件,注意查看csv文件的编码,默认不填为utf-8编码 data = pd.read_csv(file_path,encoding='gbk')   # 显示数据的前几行来验证读取是否成功   print(data.head()) pd.set_option('display.unicode.ambiguous_as_wide', True) pd.set_option('display.unicode.east_asian_width', True) pd.set_option('display.width', 300) # 设置打印宽度(**重要**) print(data.isnull().any())

三、划分数据

# 选择第二列到最后一列,第一列相当于序号列可以忽略 X = data.iloc[0:59, 1:5]   # [:)左闭右开  Y = data.iloc[0:59, 6]  # 划分数据集为训练集和验证集 X_train, X_valid, Y_train, Y_valid = train_test_split(X, Y, test_size=0.2, random_state=42)

 四、RBF核函数

# RBF 核函数 rbf_model = svm.SVC(kernel='rbf', gamma='auto') rbf_model.fit(X_train, Y_train) rbf_pred = rbf_model.predict(X_valid) print("RBF Kernel Accuracy:", accuracy_score(Y_valid, rbf_pred))

 五、线性核函数

# 线性核函数 linear_model = svm.SVC(kernel='linear') linear_model.fit(X_train, Y_train) linear_pred = linear_model.predict(X_valid) print("Linear Kernel Accuracy:", accuracy_score(Y_valid, linear_pred))

六、多项式核函数

# 多项式核函数 poly_model = svm.SVC(kernel='poly', degree=3) poly_model.fit(X_train, Y_train) poly_pred = poly_model.predict(X_valid) print("Polynomial Kernel Accuracy:", accuracy_score(Y_valid, poly_pred))

七、Sigmoid核函数

# Sigmoid 核函数 sigmoid_model = svm.SVC(kernel='sigmoid') sigmoid_model.fit(X_train, Y_train) sigmoid_pred = sigmoid_model.predict(X_valid) print("Sigmoid Kernel Accuracy:", accuracy_score(Y_valid, sigmoid_pred))

其他 

结合相关资料比较一下哪种核函数更适合该题数据,说明理由,同时给出测试集的对应预测结果

test_X = data.iloc[59:, 1:5] # print(test_X) test_Y = data.iloc[59:, 6] # print(test_Y)  #举例:若为xxx核函数 #预测数据 xxx_pred_test = xxx_model.predict(test_X) print(xxx_pred_test)

拓展:尝试用以下指标衡量支持向量机(SVR)的预测效果

● MSE(均方误差): 预测值与实际值之差平方的期望值。取值越小,模型准确度越高。
● RMSE(均方根误差):为 MSE 的平方根,取值越小,模型准确度越高。
● MAE(平均绝对误差): 绝对误差的平均值,能反映预测值误差的实际情况。取值越小,模型准确度越高。
● MAPE(平均绝对百分比误差): 是 MAE 的变形,它是一个百分比值。取值越小,模型准确度越高。
● R²: 将预测值跟只使用均值的情况下相比,结果越靠近 1 模型准确度越高。

相关内容

热门资讯

一分钟内幕!科乐吉林麻将系统发... 一分钟内幕!科乐吉林麻将系统发牌规律,福建大玩家确实真的是有挂,技巧教程(有挂ai代打);所有人都在...
一分钟揭秘!微扑克辅助软件(透... 一分钟揭秘!微扑克辅助软件(透视辅助)确实是有挂(2024已更新)(哔哩哔哩);1、用户打开应用后不...
五分钟发现!广东雀神麻雀怎么赢... 五分钟发现!广东雀神麻雀怎么赢,朋朋棋牌都是是真的有挂,高科技教程(有挂方法)1、广东雀神麻雀怎么赢...
每日必看!人皇大厅吗(透明挂)... 每日必看!人皇大厅吗(透明挂)好像存在有挂(2026已更新)(哔哩哔哩);人皇大厅吗辅助器中分为三种...
重大科普!新华棋牌有挂吗(透视... 重大科普!新华棋牌有挂吗(透视)一直是有挂(2021已更新)(哔哩哔哩)1、完成新华棋牌有挂吗的残局...
二分钟内幕!微信小程序途游辅助... 二分钟内幕!微信小程序途游辅助器,掌中乐游戏中心其实存在有挂,微扑克教程(有挂规律)二分钟内幕!微信...
科技揭秘!jj斗地主系统控牌吗... 科技揭秘!jj斗地主系统控牌吗(透视)本来真的是有挂(2025已更新)(哔哩哔哩)1、科技揭秘!jj...
1分钟普及!哈灵麻将攻略小,微... 1分钟普及!哈灵麻将攻略小,微信小程序十三张好像存在有挂,规律教程(有挂技巧)哈灵麻将攻略小是一种具...
9分钟教程!科乐麻将有挂吗,传... 9分钟教程!科乐麻将有挂吗,传送屋高防版辅助(总是存在有挂)1、完成传送屋高防版辅助透视辅助安装,帮...
每日必看教程!兴动游戏辅助器下... 每日必看教程!兴动游戏辅助器下载(辅助)真是真的有挂(2025已更新)(哔哩哔哩)1、打开软件启动之...