热门推荐!微扑克辅助透视(原来真的是有挂的)-知乎
cca3000
2024-08-03 01:12:04
0

您好:微扑克这款游戏可以开挂,确实是有挂的,需要了解加客服微信【136704302】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的

1.微扑克这款游戏可以开挂,确实是有挂的,通过添加客服微信【136704302

2.咨询软件加微信【136704302】在"设置DD功能DD微信手麻工具".点击"开启".

3.打开工具.在设置DD新消息提醒".前两个选项"设置""连接软件"均勾选"开启"(好多人就是这一步忘记做了)

4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)

 【央视客户端新闻】

用通用服务器运行千亿参数大模型,可谓是前无古人,这一领域的积累完全是空白,没有任何经验可借鉴。

LC信息,究竟是怎么做到的?

用4颗CPU,撬动千亿参数大模型

若要在单台服务器中,实现千亿参数大模型的推理,包含了2个主要阶段,均对计算能力提出了硬性需求。

首先,是预填充阶段,也叫做前向传播阶段。

这一阶段涉及到输入数据的处理、模型参数第一次读取。

比如,当你输入「给我写一篇有关AI的文章」提示,预填充阶段便会将问题中所有token、模型参数,一次性输入计算。

有时,这一输入可能是几个字,也可能是几千个字,或者是一本著作。

第一阶段的计算需求有多大,主要取决于我们输入的长度。

而在计算第一个token过程中,由于模型首次加载,会在内存中存放全部的权重参数,以及KV Cache等数据。

这是模型参数本身所占内存空间的2-3倍。

对于千亿参数模型来说,大量的参数和数据输入,需要在强大计算单元中处理。对此,它需要支持向量化指令集、矩阵计算指令集,来实现大量的矩阵乘法和张量运算。

其次,是解码阶段,即在问题全部输入之后,模型开始输出结果的阶段。

在这个阶段,对大模型唯一要求便是,输出尽可能快。同时,挑战不再是算力挑战,转而为「数据搬运」的挑战。

它包含了两部分「数据搬运」:

这些搬运对大模型的计算和推理速度,起到了一个决定性的作用。数据搬运很快,LLM吐字的速度也会快。

LLM输出主要通过KV Catch,逐一生成token,并在每步生成后存储新词块的键值向量。

因此,千亿大模型的实时推理,服务器需要具备较高的计算能力,以及较高的存储单元到计算单元的数据搬运效率。

总而言之,在大模型推理的两阶段中,有着截然不同的计算特征,需要在软硬件方面去做协同优化。

成本传统上,GPU因其具备优越的并行处理能力,一举成为了AI训练和推理的首选

然而,高端GPU服务器在市场中经常出现供不应求,极难获取的现象。

仅有资金雄厚的科技巨头们,诸如微软、谷歌,才能够承担起这笔费用。

另一方面,不仅买不起,更是用不起。

基于GPU的云服务租用,在推理任务中的代价却是高昂的。对于科研人员和应用厂商来说,需要实现更高的成本效益,就得另谋他路。

机器之心:苹果跟 OpenAI 的合作也比较有意思,包括调用 OpenAI 的大模型,以及苹果自己的端侧大模型,还有它提出的隐私计算云的概念。,机器之心:这两块能兼顾好吗?从技术角度上说。,机器之心:类似于祖母细胞那样?

虽然目前还搞不定模型的大规模训练,但通用服务器在推理任务上,却意外有着不小的优势。

在具体实践的过程中,LC信息的工程师们分别从硬件资源和算法层面入手,攻克了一个个「拦路虎」。

  1. 允许任意两个CPU之间直接进行数据传输,减少了通信延迟

  2. 提供了高传输速率,高达16GT/s(Giga Transfers per second)

此外,LC信息的研发工程师还优化了CPU之间、CPU和内存之间的走线路径和阻抗连续性。

依据三维仿真结果,他们调整了过孔排列方式,将信号串扰降低到-60dB以下,较上一代降低了50%。

并且,通过DOE矩阵式有源仿真,找到了通道所有corner的组合最优解,让算力性能可以得到充分发挥。

对于4路服务器来说,只需给每颗CPU插上8根32GB内存,就能轻松达到1TB。插满之后甚至可以扩展到16TB,最大可支持万亿参数的模型。

搭配DDR5的内存,则可以实现4800MHz ×8bit ×8通道 ×4颗 ÷1024=1200GB/s的理论上带宽。

实测结果显示,读带宽为995GB/s、写带宽为423GB/s,以及读写带宽为437GB/s。

这个数据,对于一些搭载GDDR显存的GPU或加速卡,可以说是毫不逊色。

但仅靠硬件远远不够

仅仅依靠硬件创新,是远远不够的,CPU很难进行大模型算法的大规模并行计算。

正如开篇所述,大模型对通信带宽的要求是非常高的,无论是数据计算、计算单元之间,还是计算单元与内存之间。

如果按照BF16精度计算,想要让千亿大模型的运行时延小于100ms,内存和计算单元之间的通信带宽,就至少要达到2TB/s以上。

不仅如此,对于基于擅长大规模并行计算的加速卡设计的AI大模型,通用服务器的处理器与之并不适配。

原因很明显:后者虽然拥有高通用性和高性能的计算核心,但并没有并行工作的环境。

通常来说,通用服务器会将先将模型的权重传给一个CPU,然后再由它去串联其他CPU,实现权重数据的传输。

然而,由于大模型在运行时需要频繁地在内存和CPU之间搬运算法权重,这样造成的后果就是,CPU与内存之间的带宽利用率不高,通信开销极大。

根据性能分析结果,可以清晰地看到模型中不同部分的计算时间分布——针对以上难题,LC信息提出了「张量并行」(Tensor Parallel)和「NF4量化」两项技术创新,成功实现了千亿大模型Yuan2.0-102B的实时推理。

跟使用多个PCIe的AI加速卡相比,这就形成了鲜明的对比——后者的通信开销可能高达50%,从而导致严重的算力浪费。注意,在整个推理过程中,计算时间占比达到了80%!

相关内容

热门资讯

我科学家研发出多物理域全新计算... 作为现代信号处理的基石,“傅里叶变换”能将声音、图像乃至脑电波“翻译”成频率的语言。然而,面对日益复...
财经态度丨我国每年产生固体废物... 央广网北京1月15日消息(记者李硕)据中央广播电视总台经济之声《交易实况》报道,国务院新闻办公室日前...
出口韧性持续性如何? 来源:招商宏观静思录 事件 根据海关总署2026年1月14日公布的数据,以美元计价,2025年12月...
南网数字:伏羲芯片核心应用聚焦... 证券之星消息,南网数字(301638)01月14日在投资者关系平台上答复投资者关心的问题。 投资者提...
第9分钟辅助挂!约局吧德州透视... 第9分钟辅助挂!约局吧德州透视,德州局hhpoker(透视)教你教程(有挂功能)1、这是跨平台的约局...
第2分钟私人局!wepoker... 第2分钟私人局!wepoker代打辅助,hhpoker透视脚本(透视)2025新版教程(有挂教程)1...
第一分钟发现!佛手在线是不是有... 第一分钟发现!佛手在线是不是有挂,红龙poker透视挂指令(透视)玩家教你(有挂规律)1)佛手在线是...
1分钟俱乐部!德普之星透视辅助... 1分钟俱乐部!德普之星透视辅助ios,hhpoker透视脚本下载(透视)规律教程(有挂详情)小薇(透...
从本地人宴客到明星专程寻味 为... 杀猪饭宴席 大理生皮 近日,重庆女孩“呆呆”一句“杀年猪求帮忙,管吃泡汤饭”的邀约,意外掀起一场赴宴...