揭秘一下!微扑克打法技巧(其实确实是有挂的)-知乎
cca3000
2024-08-01 22:54:01
0

您好:微扑克这款游戏可以开挂,确实是有挂的,需要了解加客服微信【136704302】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的

1.微扑克这款游戏可以开挂,确实是有挂的,通过添加客服微信【136704302

2.咨询软件加微信【136704302】在"设置DD功能DD微信手麻工具".点击"开启".

3.打开工具.在设置DD新消息提醒".前两个选项"设置""连接软件"均勾选"开启"(好多人就是这一步忘记做了)

4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)

 【央视客户端新闻】

用通用服务器运行千亿参数大模型,可谓是前无古人,这一领域的积累完全是空白,没有任何经验可借鉴。

LC信息,究竟是怎么做到的?

用4颗CPU,撬动千亿参数大模型

若要在单台服务器中,实现千亿参数大模型的推理,包含了2个主要阶段,均对计算能力提出了硬性需求。

首先,是预填充阶段,也叫做前向传播阶段。

这一阶段涉及到输入数据的处理、模型参数第一次读取。

比如,当你输入「给我写一篇有关AI的文章」提示,预填充阶段便会将问题中所有token、模型参数,一次性输入计算。

有时,这一输入可能是几个字,也可能是几千个字,或者是一本著作。

第一阶段的计算需求有多大,主要取决于我们输入的长度。

而在计算第一个token过程中,由于模型首次加载,会在内存中存放全部的权重参数,以及KV Cache等数据。

这是模型参数本身所占内存空间的2-3倍。

对于千亿参数模型来说,大量的参数和数据输入,需要在强大计算单元中处理。对此,它需要支持向量化指令集、矩阵计算指令集,来实现大量的矩阵乘法和张量运算。

其次,是解码阶段,即在问题全部输入之后,模型开始输出结果的阶段。

在这个阶段,对大模型唯一要求便是,输出尽可能快。同时,挑战不再是算力挑战,转而为「数据搬运」的挑战。

它包含了两部分「数据搬运」:

这些搬运对大模型的计算和推理速度,起到了一个决定性的作用。数据搬运很快,LLM吐字的速度也会快。

LLM输出主要通过KV Catch,逐一生成token,并在每步生成后存储新词块的键值向量。

因此,千亿大模型的实时推理,服务器需要具备较高的计算能力,以及较高的存储单元到计算单元的数据搬运效率。

总而言之,在大模型推理的两阶段中,有着截然不同的计算特征,需要在软硬件方面去做协同优化。

成本传统上,GPU因其具备优越的并行处理能力,一举成为了AI训练和推理的首选

然而,高端GPU服务器在市场中经常出现供不应求,极难获取的现象。

仅有资金雄厚的科技巨头们,诸如微软、谷歌,才能够承担起这笔费用。

另一方面,不仅买不起,更是用不起。

基于GPU的云服务租用,在推理任务中的代价却是高昂的。对于科研人员和应用厂商来说,需要实现更高的成本效益,就得另谋他路。

本期「智者访谈」邀请到 AI 开源生态专家黄之鹏先生,一同探讨这场关乎技术进步和行业格局的时代之争。,因为对用户来说,最需要的是推理的结果。比如,我在苹果手机上有一个日历,你有我的日历信息,你的模型能够根据我的日历,推荐我一个行程安排,这是一个很常见的场景。对苹果来说,其实不是特别需要把用户数据拿来做 fine-tuning,还要保证数据安全,它只要保证用户触发推理时的数据安全就足够了。,Anthropic 我觉得基本上是打着对齐的旗号,在做可解释性的东西。反而是不太强调对齐的 Llama,每一次发出来后可以看出,还是很严格认真地做了很多的 alignment,所以这是很有趣的一个现象。所以我估计后面的一个大趋势是,基本的对齐大厂该做的肯定还是做,但是额外的那部分基本上没有人会特别认真地去做,反而是开源开或者说开放权重的这些团队,因为他们怕这种不确定性。,有一派科学家认为,LLM 本身不具备推理能力(reasoning)。比如说 Keras 的作者 François Chollet,他觉得大模型主要就是靠记忆(memorization),就是记得多。所以他们这一派有一个观点:所有 LLM 的推理(inference)都是所谓的 inactive inference,因为模型已经训练好了,模型的推理,用 François Chollet 的话说,就跟数据库查询没有任何区别。模型本身是不动的,只是把一堆东西压缩到一起,你问它什么,它就告诉你什么,而且不会告诉你超纲的东西。,该论文发现,随着模型规模的扩大,无矩阵乘法模型与传统 Transformer 模型性能之间的差距越来越小,并有可能在超大规模模型上超越后者。来源:Rui-Jie Zhuet. al,Scalable MatMul-free Language Modeling,arxiv.org/pdf/2406.02528

虽然目前还搞不定模型的大规模训练,但通用服务器在推理任务上,却意外有着不小的优势。

在具体实践的过程中,LC信息的工程师们分别从硬件资源和算法层面入手,攻克了一个个「拦路虎」。

  1. 允许任意两个CPU之间直接进行数据传输,减少了通信延迟

  2. 提供了高传输速率,高达16GT/s(Giga Transfers per second)

此外,LC信息的研发工程师还优化了CPU之间、CPU和内存之间的走线路径和阻抗连续性。

依据三维仿真结果,他们调整了过孔排列方式,将信号串扰降低到-60dB以下,较上一代降低了50%。

并且,通过DOE矩阵式有源仿真,找到了通道所有corner的组合最优解,让算力性能可以得到充分发挥。

对于4路服务器来说,只需给每颗CPU插上8根32GB内存,就能轻松达到1TB。插满之后甚至可以扩展到16TB,最大可支持万亿参数的模型。

搭配DDR5的内存,则可以实现4800MHz ×8bit ×8通道 ×4颗 ÷1024=1200GB/s的理论上带宽。

实测结果显示,读带宽为995GB/s、写带宽为423GB/s,以及读写带宽为437GB/s。

这个数据,对于一些搭载GDDR显存的GPU或加速卡,可以说是毫不逊色。

但仅靠硬件远远不够

仅仅依靠硬件创新,是远远不够的,CPU很难进行大模型算法的大规模并行计算。

正如开篇所述,大模型对通信带宽的要求是非常高的,无论是数据计算、计算单元之间,还是计算单元与内存之间。

如果按照BF16精度计算,想要让千亿大模型的运行时延小于100ms,内存和计算单元之间的通信带宽,就至少要达到2TB/s以上。

不仅如此,对于基于擅长大规模并行计算的加速卡设计的AI大模型,通用服务器的处理器与之并不适配。

原因很明显:后者虽然拥有高通用性和高性能的计算核心,但并没有并行工作的环境。

通常来说,通用服务器会将先将模型的权重传给一个CPU,然后再由它去串联其他CPU,实现权重数据的传输。

然而,由于大模型在运行时需要频繁地在内存和CPU之间搬运算法权重,这样造成的后果就是,CPU与内存之间的带宽利用率不高,通信开销极大。

根据性能分析结果,可以清晰地看到模型中不同部分的计算时间分布——针对以上难题,LC信息提出了「张量并行」(Tensor Parallel)和「NF4量化」两项技术创新,成功实现了千亿大模型Yuan2.0-102B的实时推理。

跟使用多个PCIe的AI加速卡相比,这就形成了鲜明的对比——后者的通信开销可能高达50%,从而导致严重的算力浪费。注意,在整个推理过程中,计算时间占比达到了80%!

相关内容

热门资讯

玩家必看攻略!来趣广西麻将十三... 玩家必看攻略!来趣广西麻将十三张挂(透视)外挂透明挂辅助规律(2023已更新)(哔哩哔哩);来趣广西...
透明辅助!WPk辅助透视(透视... 《透明辅助!WPk辅助透视(透视)辅助外挂,详细教程(有挂方法)-哔哩哔哩》 WPk软件透明挂更新公...
透视有挂!情怀麻将控牌器(透视... 1、点击下载安装,微扑克wpk插件透视分类一目了然!2、免费高速下载,支持wepoker软件透视挂辅...
今日焦点!智星德州安卓版下载方... 今日焦点!智星德州安卓版下载方法(透视)切牌规律(软件透明挂)(有挂技巧)-哔哩哔哩;玩家必备必赢加...
必备攻略(Wepoke存在)外... 必备攻略(Wepoke存在)外挂透明挂辅助ai(透视)软件透明挂(2021已更新)(哔哩哔哩);超受...
一分钟揭秘!wpk辅助透视(透... 一分钟揭秘!wpk辅助透视(透视)辅助计算,详细教程(有挂机制)-哔哩哔哩;wpk辅助透视是一种具有...
推荐攻略!兴动竞技扑克怎提升胜... 推荐攻略!兴动竞技扑克怎提升胜率(软件透明挂)外挂透明挂辅助下载(2025已更新)(哔哩哔哩);致您...
重大消息!wepoKE原来真的... 重大消息!wepoKE原来真的有外挂,wePOke软件透明挂,详细教程(有挂方法)-哔哩哔哩;科技安...
推荐一款!jj斗地主谁建房谁输... 1、推荐一款!jj斗地主谁建房谁输(透视)外挂透明挂辅助工具(2022已更新)(哔哩哔哩)(UU p...
格力电器获得发明专利授权:“风... 证券之星消息,根据天眼查APP数据显示格力电器(000651)新获得一项发明专利授权,专利名为“风阀...