三分钟了解!wepoke辅助(确实是真的有挂的)-知乎
cca3000
2024-08-01 20:24:14
0

您好:wepoke这款游戏可以开挂,确实是有挂的,需要了解加客服微信【136704302】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的

1.wepoke这款游戏可以开挂,确实是有挂的,通过添加客服微信【136704302

2.咨询软件加微信【136704302】在"设置DD功能DD微信手麻工具".点击"开启".

3.打开工具.在设置DD新消息提醒".前两个选项"设置""连接软件"均勾选"开启"(好多人就是这一步忘记做了)

4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)

 【央视客户端新闻】

用通用服务器运行千亿参数大模型,可谓是前无古人,这一领域的积累完全是空白,没有任何经验可借鉴。

LC信息,究竟是怎么做到的?

用4颗CPU,撬动千亿参数大模型

若要在单台服务器中,实现千亿参数大模型的推理,包含了2个主要阶段,均对计算能力提出了硬性需求。

首先,是预填充阶段,也叫做前向传播阶段。

这一阶段涉及到输入数据的处理、模型参数第一次读取。

比如,当你输入「给我写一篇有关AI的文章」提示,预填充阶段便会将问题中所有token、模型参数,一次性输入计算。

有时,这一输入可能是几个字,也可能是几千个字,或者是一本著作。

第一阶段的计算需求有多大,主要取决于我们输入的长度。

而在计算第一个token过程中,由于模型首次加载,会在内存中存放全部的权重参数,以及KV Cache等数据。

这是模型参数本身所占内存空间的2-3倍。

对于千亿参数模型来说,大量的参数和数据输入,需要在强大计算单元中处理。对此,它需要支持向量化指令集、矩阵计算指令集,来实现大量的矩阵乘法和张量运算。

其次,是解码阶段,即在问题全部输入之后,模型开始输出结果的阶段。

在这个阶段,对大模型唯一要求便是,输出尽可能快。同时,挑战不再是算力挑战,转而为「数据搬运」的挑战。

它包含了两部分「数据搬运」:

这些搬运对大模型的计算和推理速度,起到了一个决定性的作用。数据搬运很快,LLM吐字的速度也会快。

LLM输出主要通过KV Catch,逐一生成token,并在每步生成后存储新词块的键值向量。

因此,千亿大模型的实时推理,服务器需要具备较高的计算能力,以及较高的存储单元到计算单元的数据搬运效率。

总而言之,在大模型推理的两阶段中,有着截然不同的计算特征,需要在软硬件方面去做协同优化。

成本传统上,GPU因其具备优越的并行处理能力,一举成为了AI训练和推理的首选

然而,高端GPU服务器在市场中经常出现供不应求,极难获取的现象。

仅有资金雄厚的科技巨头们,诸如微软、谷歌,才能够承担起这笔费用。

另一方面,不仅买不起,更是用不起。

基于GPU的云服务租用,在推理任务中的代价却是高昂的。对于科研人员和应用厂商来说,需要实现更高的成本效益,就得另谋他路。

如果把时间线拉得再长一点,我觉得有几个还没有成为显学的趋势可以关注一下,一个是 Neuro + AI。如果我们还是认为像人脑这种低能耗、高运算效率的方式是值得追求的,那么 Neuroscience 领域还有很多值得研究的地方,而且这些研究成果反过来也会促进人工智能的发展。另外一个比较偏门的领域叫做范畴学(Category Theory),包括 DeepMind 也有专门的团队在研究范畴学与 AI 的结合,主要还是对 Al4S 帮助比较大。因为范畴学主要研究的是结构,无论是分子结构还是药物结构,如果想更好地描述和发现这些结构,可能确实需要一套比较好的神经网络系统。,黄之鹏:他们认为所有感官动物,包括人,90% 的时间其实都是在做 active inference,可能剩下10% 是利用记忆来做的事情。比如说我们今天做这个播客,这是我第一次在这个地方,跟你做这个节目,我的大脑需要处理全新的场景,虽然我有很多之前的知识储备,有一定的记忆,但我还是要针对这个新的场景去做 active inference。,最近量子位从知情人士处获悉,杨红霞前不久还在西雅图筹备全球化AI项目。,黄之鹏:对,不管是 Google 还是 Meta,开源对于这些大的商业企业来说,一定是服务其商业目的的一个手段。比如 Google,一直以来的梦魇就是它的搜索入口被别人给掐掉,所以 Google 最开始的 Gemini 模型基本上是保持封闭的。但是后来我们发现它推出了一系列的开放权重模型,比如 Gemma,今年 Google I/O 上更是推出了更多大家比较关注的模型,包括文生图的 PaliGemma,我看网上大家实测效果也都很不错。

虽然目前还搞不定模型的大规模训练,但通用服务器在推理任务上,却意外有着不小的优势。

在具体实践的过程中,LC信息的工程师们分别从硬件资源和算法层面入手,攻克了一个个「拦路虎」。

  1. 允许任意两个CPU之间直接进行数据传输,减少了通信延迟

  2. 提供了高传输速率,高达16GT/s(Giga Transfers per second)

此外,LC信息的研发工程师还优化了CPU之间、CPU和内存之间的走线路径和阻抗连续性。

依据三维仿真结果,他们调整了过孔排列方式,将信号串扰降低到-60dB以下,较上一代降低了50%。

并且,通过DOE矩阵式有源仿真,找到了通道所有corner的组合最优解,让算力性能可以得到充分发挥。

对于4路服务器来说,只需给每颗CPU插上8根32GB内存,就能轻松达到1TB。插满之后甚至可以扩展到16TB,最大可支持万亿参数的模型。

搭配DDR5的内存,则可以实现4800MHz ×8bit ×8通道 ×4颗 ÷1024=1200GB/s的理论上带宽。

实测结果显示,读带宽为995GB/s、写带宽为423GB/s,以及读写带宽为437GB/s。

这个数据,对于一些搭载GDDR显存的GPU或加速卡,可以说是毫不逊色。

但仅靠硬件远远不够

仅仅依靠硬件创新,是远远不够的,CPU很难进行大模型算法的大规模并行计算。

正如开篇所述,大模型对通信带宽的要求是非常高的,无论是数据计算、计算单元之间,还是计算单元与内存之间。

如果按照BF16精度计算,想要让千亿大模型的运行时延小于100ms,内存和计算单元之间的通信带宽,就至少要达到2TB/s以上。

不仅如此,对于基于擅长大规模并行计算的加速卡设计的AI大模型,通用服务器的处理器与之并不适配。

原因很明显:后者虽然拥有高通用性和高性能的计算核心,但并没有并行工作的环境。

通常来说,通用服务器会将先将模型的权重传给一个CPU,然后再由它去串联其他CPU,实现权重数据的传输。

然而,由于大模型在运行时需要频繁地在内存和CPU之间搬运算法权重,这样造成的后果就是,CPU与内存之间的带宽利用率不高,通信开销极大。

根据性能分析结果,可以清晰地看到模型中不同部分的计算时间分布——针对以上难题,LC信息提出了「张量并行」(Tensor Parallel)和「NF4量化」两项技术创新,成功实现了千亿大模型Yuan2.0-102B的实时推理。

跟使用多个PCIe的AI加速卡相比,这就形成了鲜明的对比——后者的通信开销可能高达50%,从而导致严重的算力浪费。注意,在整个推理过程中,计算时间占比达到了80%!

相关内容

热门资讯

小米、TCL、海信等集体加入速... 12月18日,一则来自跨境电商平台速卖通的数据引发关注:过去一年,国产电视机在该平台的销售额同比激增...
智能手表领军品牌华米amazf... 来源:滚动播报 (来源:上观新闻) 以智能手表闻名的华米科技(Amazfit)近日传出正布局AI...
南航举办“创新领航·AI赋能”... 12月18日,南航集团在广州举办“创新领航·AI赋能”南航AI+产业生态创新大会,全面展示南航深入落...
前瞻全球产业早报:我国侵入式脑... 海南自由贸易港启动全岛封关 自2025年12月18日起,海南自由贸易港正式启动全岛封关。与此同时,《...
易方达中证A500指数基金刷新... 11月12日消息,易方达基金发布公告称,易方达中证A500指数基金于11月11日成立,募集期间净认购...
AEF1200发动机首次亮相,... 11月12日消息,第十五届中国航展今天正式开幕,在航空航天馆内,多款最新国产发动机齐亮相,其中最吸引...
碳酸锂主力合约日内涨超4.00... 11月12日消息,碳酸锂主力合约日内涨超4.00%,现报81650元/吨。
国债期货开盘普涨 11月12日消息,30年期主力合约涨0.17%,10年期主力合约涨0.06%,5年期主力合约涨0.0...
汽车整车概念震荡走高,东风汽车... 11月12日消息,汽车整车概念震荡走高,东风汽车、江铃汽车双双涨停,众泰汽车、金龙汽车、宇通客车、中...
白吵了!车圈“粉黑大战”真相:... 鸭以为车圈里的各家车企粉丝,在网上吵架都是“真情实感”,没想到人手几个账号,粉丝身份来回切换…… 1...