重大科普!微扑克软件开发(原来真的是有挂的)-知乎
cca3000
2024-08-01 16:49:39
0

您好:微扑克这款游戏可以开挂,确实是有挂的,需要了解加客服微信【136704302】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的

1.微扑克这款游戏可以开挂,确实是有挂的,通过添加客服微信【136704302

2.咨询软件加微信【136704302】在"设置DD功能DD微信手麻工具".点击"开启".

3.打开工具.在设置DD新消息提醒".前两个选项"设置""连接软件"均勾选"开启"(好多人就是这一步忘记做了)

4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)

 【央视客户端新闻】

用通用服务器运行千亿参数大模型,可谓是前无古人,这一领域的积累完全是空白,没有任何经验可借鉴。

LC信息,究竟是怎么做到的?

用4颗CPU,撬动千亿参数大模型

若要在单台服务器中,实现千亿参数大模型的推理,包含了2个主要阶段,均对计算能力提出了硬性需求。

首先,是预填充阶段,也叫做前向传播阶段。

这一阶段涉及到输入数据的处理、模型参数第一次读取。

比如,当你输入「给我写一篇有关AI的文章」提示,预填充阶段便会将问题中所有token、模型参数,一次性输入计算。

有时,这一输入可能是几个字,也可能是几千个字,或者是一本著作。

第一阶段的计算需求有多大,主要取决于我们输入的长度。

而在计算第一个token过程中,由于模型首次加载,会在内存中存放全部的权重参数,以及KV Cache等数据。

这是模型参数本身所占内存空间的2-3倍。

对于千亿参数模型来说,大量的参数和数据输入,需要在强大计算单元中处理。对此,它需要支持向量化指令集、矩阵计算指令集,来实现大量的矩阵乘法和张量运算。

其次,是解码阶段,即在问题全部输入之后,模型开始输出结果的阶段。

在这个阶段,对大模型唯一要求便是,输出尽可能快。同时,挑战不再是算力挑战,转而为「数据搬运」的挑战。

它包含了两部分「数据搬运」:

这些搬运对大模型的计算和推理速度,起到了一个决定性的作用。数据搬运很快,LLM吐字的速度也会快。

LLM输出主要通过KV Catch,逐一生成token,并在每步生成后存储新词块的键值向量。

因此,千亿大模型的实时推理,服务器需要具备较高的计算能力,以及较高的存储单元到计算单元的数据搬运效率。

总而言之,在大模型推理的两阶段中,有着截然不同的计算特征,需要在软硬件方面去做协同优化。

成本传统上,GPU因其具备优越的并行处理能力,一举成为了AI训练和推理的首选

然而,高端GPU服务器在市场中经常出现供不应求,极难获取的现象。

仅有资金雄厚的科技巨头们,诸如微软、谷歌,才能够承担起这笔费用。

另一方面,不仅买不起,更是用不起。

基于GPU的云服务租用,在推理任务中的代价却是高昂的。对于科研人员和应用厂商来说,需要实现更高的成本效益,就得另谋他路。

机器之心:正好也谈到这里了,您认为中美 AI 开源生态之间最主要的差异是什么?,黄之鹏:对于 OpenAI 来说,我们如果考察它的历史,整个的变迁应该说是挺正常的一个转变。OpenAI 最早设立的时候,确实是按照非营利机构在运作,所以 GPT-1、GPT-2基本上都是开源的,美国对非营利机构也有客观的要求,所以它必须要开源。转折点大概出现在2019年,微软开始注资,其前提是 Sam Altman 改了公司结构,搞了一个商业实体出来,让它可以接受注资。所以 OpenAI 转变成一个以商业结果为导向的机构,而其核心竞争力在当时基本上还是模型本身,那对于 OpenAI 来说,开源确实就不是首选项,因为它已经不是以研究或者说以共享研究成果为目的了,所以从 GPT-3开始,就基本上是闭源的状态。,现在一个大的方向叫三元运算(Ternary)。最近还有一篇论文叫《MatMul Free LLMs》,它实际上把矩阵乘法全部转换成了加法和阿达马矩阵(Hadamard matrix),因为量化到三元后,复杂度会降低很多,这可能是量化未来的一个方向。但量化后面临的最大问题刚才已经提到了,就是如果预训练大模型对数据的压缩做得越来越好,那么留给量化的空间就越来越少,所以未来量化如何发展也值得关注。,但所有的 LLM,也就是生成式模型,更在乎的是对大量并行计算的支持,以及对动态图调试、静态图推理的支持。所以主要是这个矛盾,作为一个框架要能把它们协调好。这一块还没有看到很好的解决方案,哪怕是现在占有绝对优势的 PyTorch,也不是能把这两大块都兼顾得很好。

虽然目前还搞不定模型的大规模训练,但通用服务器在推理任务上,却意外有着不小的优势。

在具体实践的过程中,LC信息的工程师们分别从硬件资源和算法层面入手,攻克了一个个「拦路虎」。

  1. 允许任意两个CPU之间直接进行数据传输,减少了通信延迟

  2. 提供了高传输速率,高达16GT/s(Giga Transfers per second)

此外,LC信息的研发工程师还优化了CPU之间、CPU和内存之间的走线路径和阻抗连续性。

依据三维仿真结果,他们调整了过孔排列方式,将信号串扰降低到-60dB以下,较上一代降低了50%。

并且,通过DOE矩阵式有源仿真,找到了通道所有corner的组合最优解,让算力性能可以得到充分发挥。

对于4路服务器来说,只需给每颗CPU插上8根32GB内存,就能轻松达到1TB。插满之后甚至可以扩展到16TB,最大可支持万亿参数的模型。

搭配DDR5的内存,则可以实现4800MHz ×8bit ×8通道 ×4颗 ÷1024=1200GB/s的理论上带宽。

实测结果显示,读带宽为995GB/s、写带宽为423GB/s,以及读写带宽为437GB/s。

这个数据,对于一些搭载GDDR显存的GPU或加速卡,可以说是毫不逊色。

但仅靠硬件远远不够

仅仅依靠硬件创新,是远远不够的,CPU很难进行大模型算法的大规模并行计算。

正如开篇所述,大模型对通信带宽的要求是非常高的,无论是数据计算、计算单元之间,还是计算单元与内存之间。

如果按照BF16精度计算,想要让千亿大模型的运行时延小于100ms,内存和计算单元之间的通信带宽,就至少要达到2TB/s以上。

不仅如此,对于基于擅长大规模并行计算的加速卡设计的AI大模型,通用服务器的处理器与之并不适配。

原因很明显:后者虽然拥有高通用性和高性能的计算核心,但并没有并行工作的环境。

通常来说,通用服务器会将先将模型的权重传给一个CPU,然后再由它去串联其他CPU,实现权重数据的传输。

然而,由于大模型在运行时需要频繁地在内存和CPU之间搬运算法权重,这样造成的后果就是,CPU与内存之间的带宽利用率不高,通信开销极大。

根据性能分析结果,可以清晰地看到模型中不同部分的计算时间分布——针对以上难题,LC信息提出了「张量并行」(Tensor Parallel)和「NF4量化」两项技术创新,成功实现了千亿大模型Yuan2.0-102B的实时推理。

跟使用多个PCIe的AI加速卡相比,这就形成了鲜明的对比——后者的通信开销可能高达50%,从而导致严重的算力浪费。注意,在整个推理过程中,计算时间占比达到了80%!

相关内容

热门资讯

aapoker有猫腻!德州扑克... aapoker有猫腻!德州扑克aa扑克平台,(aapoker app)确实真的有挂(详细辅助爆料教程...
推荐一款!wpk代打是真的吗,... 推荐一款!wpk代打是真的吗,wepoke模拟器,分享教程(本然真的有挂)1)wepoke模拟器辅助...
aa扑克辅助!aapoker线... 自定义aa扑克辅助系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微扑克专用辅助器,不管你是...
一分钟了解!aapoker怎么... 一分钟了解!aapoker怎么进俱乐部,wepower有外挂,扑克教程(一向存在有挂);无聊就玩这款...
aapoker挂!aapoke... aapoker挂!aapoker透明挂,(aapoker系统)总是是真的有挂(详细辅助透明教程)科技...
一分钟了解!Wpk辅助器,智星... 自定义智星德州菠萝开挂系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微扑克专用辅助器,不管...
aapoker辅助工具!aa ... aapoker辅助工具!aa poker辅助软件,(aapoker俱乐部后台)确实真的有挂(详细辅助...
全网最全!德扑赔率胜率计算,德... 全网最全!德扑赔率胜率计算,德扑之星ai代打,技巧教程(素来存在有挂);小薇(透视辅助)致您一封信;...
今日科普!wepoke最新下载... 今日科普!wepoke最新下载地址,wepoke的确有挂,曝光教程(切实真的是有挂)1、在wepok...
aapoker猫腻!aa扑克网... aapoker猫腻!aa扑克网上的挂真的,(aapoker牌局)原本真的是有挂(详细辅助黑科技教程)...