hadoop学习---基于Hive的教育平台数据仓库分析案例(一)
创始人
2025-01-16 11:07:58
0

后续链接第二部分,第二部分请点击:基于Hive的教育平台数据仓库分析案例(二)

后续链接第三部分,第三部分请点击:基于Hive的教育平台数据仓库分析案例   (三)

案例背景:

大数据技术的应用可以从海量的用户行为数据中进行挖掘分析,根据分析结果优化平台的服务质量,最终满足用户的需求。教育大数据分析平台项目就是将大数据技术应用于教育培训领域,为企业经营提供数据支撑。

案例数据产生流程:

案例数据流转:

 首先业务是存储在MySQL数据库中, 通过sqoop对MySQL的数据进行数据的导入操作, 将数据导入到HIVE的ODS层中, 对数据进行清洗转换成处理工作, 处理之后对数据进行统计分析, 将统计分析的结果基于sqoop在导出到MySQL中, 最后使用finebi实现图表展示操作, 由于分析工作是需要周期性干活, 采用ooize进行自动化的调度工作, 整个项目是基于cloudera manager进行统一监控管理

案例需求:

  1. 建立集团数据仓库,统一集团数据中心,把分散的业务数据进行预先处理和存储
  2. 根据业务分析需要,从海量的用户行为数据中进行挖掘分析,定制多维的数据集合,形成数据集市,供各个场景主题使用。
  3. 前端业务数据展示选择和控制,选取合适的前端数据统计、分析结果展示工具。

 案例架构:

 案例工具:

zookeeper: 集群管理工具, 主要服务于hadoop高可用以及其他基于zookeeper管理的大数据软件
HDFS:  主要负责最终数据的存储
YARN: 主要提供资源的分配

HIVE: 用于编写SQL, 进行数据分析
oozie:  主要是用来做自动化定时调度
sqoop: 主要是用于数据的导入导出

HUE: 提升操作hadoop用户体验, 可以基于HUE操作HDFS, HIVE ....
FINEBI: 由帆软公司提供的一款进行数据报表展示工具

案例数据架构:

将调研需求转换为开发需求

如何转换: 
    将每一个需求中涉及到维度以及涉及到指标从需求中分析出来, 同时找到涉及到那些表, 以及那些字段

目的:
    涉及维度
    涉及指标
    涉及表
    涉及字段

在此基础上, 还需要找到需要清洗那些数据, 需要转换那些数据, 如果有多个表, 表与表关联条件是什么...

 访问和咨询用户模块:

总访问客户量、地区独立访客热力图、访客咨询率趋势、客户访问量和访客咨询率双轴趋势、​​时间段访问客户量趋势、来源渠道访问量占比、搜索来源访问量占比、跃页面排行榜

意向用户模块:

意向学员位置热力图、总意向量、意向学科排名、意向校区排名、来源渠道占比、意向贡献中心占比

有效线索模块:

有效线索转化率、有效线索转化率时间段趋势、有效线索量

报名用户模块:

校区报名柱状图、学科报名柱状图、总报名量、线上报名量、意向用户报名转化率、有效线索报名转化率、日报名趋势图、校区学科的报名学员TOP来源渠道占比、咨询中心报名贡献

学生出勤模块:

班级出勤人数、班级出勤率、班级迟到人数、班级迟到率、班级请假人数、班级请假率、班级旷课人数、班级旷课率

案例模块分析:

访问和咨询用户数据模块(全量分析):

需求指标:

需求一:  统计指定时间段内,访问客户的总数量。能够下钻到小时数据。

需求二: 统计指定时间段内,访问客户中各区域人数热力图。能够下钻到小时数据。

需求三: 统计指定时间段内,不同地区(省、市)访问的客户中发起咨询的人数占比。

需求四: 统计指定时间段内,每日客户访问量/咨询率双轴趋势图。能够下钻到小时数据。

需求五: 统计指定时间段内,1-24h之间,每个时间段的访问客户量。

需求六: 统计指定时间段内,不同来源渠道的访问客户量占比。能够下钻到小时数据。

需求七: 统计指定时间段内,不同搜索来源的访问客户量占比。能够下钻到小时数据。

需求八: 统计指定时间段内,访问客户量最多的页面排行榜TOPN。能够下钻到小时数据。

总体分析: 

涉及维度:
    固有维度: 
        时间维度: 年 季度 月 天 小时
    产品属性维度:
        地区维度
        来源渠道
        搜索来源
        受访页面

涉及指标: 
            访问量
            咨询量
涉及表 : 
            事实表: web_chat_ems_2019_12 和 web_chat_text_ems_2019_11 
            维度表: 没有 (数仓建模, 不需要DIM层)

涉及字段: 
            时间维度: 
                web_chat_ems: create_time
            地区维度: 
                web_chat_ems:  area
            来源渠道:
                web_chat_ems: origin_channel
            搜索来源:
                web_chat_ems: seo_source
            受访页面:
                web_chat_text_ems: from_url
            指标字段: 
                访问量: sid
                咨询量: sid

            区分访问和咨询:  
                web_chat_ems: msg_count >= 1 即为咨询数据

需要清洗数据: 没有清洗
    
需要转换字段: 时间字段
    需要将create_time 转换为 yearinfo, quarterinfo,monthinfo,dayinfo,hourinfo
    
一对一关系 :  id = id
            一对一关系其实本质就是一张表

数据准备: 将原始数据加载到本地MySQL数据库中

访问客户量的数据来源于咨询系统的访问会话月表web_chat_ems:

表名的格式为web_chat_ems_年_月,年份为4位数字,月份为二位数字,如果为单数时,前面会用0来补全,比如web_chat_ems_2019_07

web_chat_text_ems表是访问附属月表:

表名的格式和web_chat_ems相同。web_chat_ems和web_chat_text_ems是一一对应的,通过主键id进行关联。

 在当前数据库下执行sql脚本文件,将数据导入即可

点击:访问和咨询用户数据模块sql文件

 建模分析:

 ODS层: 源数据层

作用: 对接数据源, 一般和数据源保持相同的粒度(将数据源数据完整的拷贝到ODS层)

建表比较简单: 
    业务库中对应表有那些字段, 需要在ODS层建一个与之相同字段的表即可, 额外在建表的时候, 需要构建为分区表, 分区字段为时间字段, 用于标记在何年何月何日将数据抽取到ODS层   
此层会有二个表

 DIM层: 维度层

作用: 存储维度表数据

此时不需要, 因为当前主题, 没有维度表

DWD层: 明细层

作用:  1) 清洗转换    2) 少量维度退化

思考1: 当前需要做什么清洗操作?
     不需要进行清洗

思考2: 当前需要做什么转换操作?
    需要对时间字段进行转换, 需要转换为  yearinfo, quarterinfo,monthinfo,dayinfo,hourinfo

思考3: 当前需要做什么维度退化操作?
    两个事实表合并在一起
    
建表字段 : 原有表的字段 + 转换后的字段+ 清洗后字段
    sid,session_id,ip,create_time,area,origin_channel,seo_source,
    from_url,msg_count,yearinfo,quarterinfo,monthinfo,dayinfo,
    hourinfo,referrer,landing_page_url,url_title,
    platform_description,other_params,history

思想:
    当合并表个表的时候, 获取抽取数据时候, 处理方案有三种:
    1) 当表中字段比较多的时候, 只需要抽取需要用的字段
    2) 当无法确定需要用那些字段的时候, 采用全部抽取
    3) 如果表中字段比较少, 不管用得上, 还是用不上, 都抽取

DWM层: 中间层 (省略)

作用: 1) 维度退化操作  2) 提前聚合

思考1: 当前需要进行什么维度退化操作?
    没有任何维度退化操作, 压根都没有DIM层
思考2: 当前需要进行什么提前聚合操作?
    可以尝试先对小时进行提前聚合操作, 以便于后统计方便

思考3: 当前主题是否可以按照小时提前聚合呢? 
    目前不可以, 因为数据存在重复的问题, 无法提前聚合, 一旦聚合后, 会导致后续的统计出现不精确问题

DWS层: 业务层

作用: 细化维度统计操作

一般是一个指标会对应一个统计结果表
访问量: 
        固有维度: 
                    时间维度: 年 季度 月 天 小时
        产品属性维度:
                    地区维度
                    来源渠道
                    搜索来源
                    受访页面

建表字段: 指标统计字段 + 各个维度字段 + 三个经验字段(time_type,group_time,time_str)
    sid_total,sessionid_total,ip_total,yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo,
    area,origin_channel,seo_source,from_url, time_type,group_time,time_str

咨询量:
        固有维度: 
                    时间维度: 年 季度 月 天 小时
        产品属性维度:
                    地区维度
                    来源渠道

建表字段: 指标统计字段 + 各个维度字段 + 三个经验字段(time_type,group_time,time_str)
    sid_total,sessionid_total,ip_total,yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo,
    area,origin_channel, time_type,group_time,time_str


注意: 如果不存在的维度字段的值, 设置为 -1 (业务指定, 表示没有这个维度)

DA层:

作用: 对接应用, 应用需要什么数据, 从DWS层获取什么数据即可

此层目前不做任何处理, 已经全部需要都细化统计完成了, 后续具体用什么, 看图表支持了...

建模操作(建表):

 ODS层:将MySQL数据库中数据导入hive中
CREATE DATABASE IF NOT EXISTS `itcast_ods`; --写入时压缩生效 set hive.exec.orc.compression.strategy=COMPRESSION;  -- 访问咨询表 CREATE EXTERNAL TABLE IF NOT EXISTS itcast_ods.web_chat_ems (   id INT comment '主键',   create_date_time STRING comment '数据创建时间',   session_id STRING comment '七陌sessionId',   sid STRING comment '访客id',   create_time STRING comment '会话创建时间',   seo_source STRING comment '搜索来源',   seo_keywords STRING comment '关键字',   ip STRING comment 'IP地址',   area STRING comment '地域',   country STRING comment '所在国家',   province STRING comment '省',   city STRING comment '城市',   origin_channel STRING comment '投放渠道',   user_match STRING comment '所属坐席',   manual_time STRING comment '人工开始时间',   begin_time STRING comment '坐席领取时间 ',   end_time STRING comment '会话结束时间',   last_customer_msg_time_stamp STRING comment '客户最后一条消息的时间',   last_agent_msg_time_stamp STRING comment '坐席最后一下回复的时间',   reply_msg_count INT comment '客服回复消息数',   msg_count INT comment '客户发送消息数',   browser_name STRING comment '浏览器名称',   os_info STRING comment '系统名称') comment '访问会话信息表' PARTITIONED BY(starts_time STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' stored as orc location '/user/hive/warehouse/itcast_ods.db/web_chat_ems_ods' TBLPROPERTIES ('orc.compress'='ZLIB');  -- 访问咨询附属表 CREATE EXTERNAL TABLE IF NOT EXISTS itcast_ods.web_chat_text_ems (   id INT COMMENT '主键来自MySQL',   referrer STRING comment '上级来源页面',   from_url STRING comment '会话来源页面',   landing_page_url STRING comment '访客着陆页面',   url_title STRING comment '咨询页面title',   platform_description STRING comment '客户平台信息',   other_params STRING comment '扩展字段中数据',   history STRING comment '历史访问记录' ) comment 'EMS-PV测试表' PARTITIONED BY(start_time STRING) ROW FORMAT DELIMITED  FIELDS TERMINATED BY '\t' stored as orc location '/user/hive/warehouse/itcast_ods.db/web_chat_text_ems_ods' TBLPROPERTIES ('orc.compress'='ZLIB'); 
DWD层:
CREATE DATABASE IF NOT EXISTS `itcast_dwd`;  create table if not exists itcast_dwd.visit_consult_dwd(   session_id STRING comment '七陌sessionId',   sid STRING comment '访客id',   create_time bigint comment '会话创建时间',   seo_source STRING comment '搜索来源',   ip STRING comment 'IP地址',   area STRING comment '地域',   msg_count int comment '客户发送消息数',   origin_channel STRING COMMENT '来源渠道',   referrer STRING comment '上级来源页面',   from_url STRING comment '会话来源页面',   landing_page_url STRING comment '访客着陆页面',   url_title STRING comment '咨询页面title',   platform_description STRING comment '客户平台信息',   other_params STRING comment '扩展字段中数据',   history STRING comment '历史访问记录',   hourinfo string comment '小时' ) comment '访问咨询DWD表' partitioned by(yearinfo String,quarterinfo string, monthinfo String, dayinfo string) row format delimited fields terminated by '\t' stored as orc location '/user/hive/warehouse/itcast_dwd.db/visit_consult_dwd' tblproperties ('orc.compress'='SNAPPY');
 DWS层
CREATE DATABASE IF NOT EXISTS `itcast_dws`; -- 访问量统计结果表 CREATE TABLE IF NOT EXISTS itcast_dws.visit_dws (   sid_total INT COMMENT '根据sid去重求count',   sessionid_total INT COMMENT '根据sessionid去重求count',   ip_total INT COMMENT '根据IP去重求count',   area STRING COMMENT '区域信息',   seo_source STRING COMMENT '搜索来源',   origin_channel STRING COMMENT '来源渠道',   hourinfo STRING COMMENT '创建时间,统计至小时',   time_str STRING COMMENT '时间明细',   from_url STRING comment '会话来源页面',   groupType STRING COMMENT '产品属性类型:1.地区;2.搜索来源;3.来源渠道;4.会话来源页面;5.总访问量',   time_type STRING COMMENT '时间聚合类型:1、按小时聚合;2、按天聚合;3、按月聚合;4、按季度聚合;5、按年聚合;') comment 'EMS访客日志dws表' PARTITIONED BY(yearinfo STRING,quarterinfo STRING,monthinfo STRING,dayinfo STRING) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' stored as orc location '/user/hive/warehouse/itcast_dws.db/visit_dws' TBLPROPERTIES ('orc.compress'='SNAPPY');  -- 咨询量统计结果表 CREATE TABLE IF NOT EXISTS itcast_dws.consult_dws (   sid_total INT COMMENT '根据sid去重求count',   sessionid_total INT COMMENT '根据sessionid去重求count',   ip_total INT COMMENT '根据IP去重求count',   area STRING COMMENT '区域信息',   origin_channel STRING COMMENT '来源渠道',   hourinfo STRING COMMENT '创建时间,统计至小时',   time_str STRING COMMENT '时间明细',   groupType STRING COMMENT '产品属性类型:1.地区;2.来源渠道',   time_type STRING COMMENT '时间聚合类型:1、按小时聚合;2、按天聚合;3、按月聚合;4、按季度聚合;5、按年聚合;' ) COMMENT '咨询量DWS宽表' PARTITIONED BY (yearinfo string,quarterinfo STRING, monthinfo STRING, dayinfo string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS ORC LOCATION '/user/hive/warehouse/itcast_dws.db/consult_dws' TBLPROPERTIES ('orc.compress'='SNAPPY');

数据采集

目的: 用sqoop将业务端(MySQL)的数据导入到ODS层对应表(hive)中。

注意:字段名字要一一对应,不对的要改名再导入。

-- 访问咨询主表 sqoop import \ --connect jdbc:mysql://192.168.52.150:3306/nev \ --username root \ --password 123456 \ --query 'SELECT id,create_date_time,session_id,sid,create_time,seo_source,seo_keywords,ip, AREA,country,province,city,origin_channel,USER AS user_match,manual_time,begin_time,end_time, last_customer_msg_time_stamp,last_agent_msg_time_stamp,reply_msg_count, msg_count,browser_name,os_info, "2021-09-24" AS starts_time FROM web_chat_ems_2019_07 where 1=1 and $CONDITIONS' \ --hcatalog-database itcast_ods \ --hcatalog-table web_chat_ems \ -m 1   -- 访问咨询附属表 sqoop import \ --connect jdbc:mysql://192.168.52.150:3306/nev \ --username root \ --password 123456 \ --query 'SELECT    *, "2021-09-24" AS start_time FROM web_chat_text_ems_2019_07 where 1=1 and $CONDITIONS' \ --hcatalog-database itcast_ods \ --hcatalog-table web_chat_text_ems \ -m 1 

 校验数据是否导入成功:

1) 查看mysql共计有多少条数据 	SELECT COUNT(1) FROM web_chat_ems_2019_07; 211197 	SELECT COUNT(1) FROM web_chat_text_ems_2019_07; 105599 2) 到hive中对表查询一下一共多少条数据 	SELECT COUNT(1) FROM itcast_ods.web_chat_ems; 211197 	SELECT COUNT(1) FROM itcast_ods.web_chat_text_ems; 105599 3) 查询其中一部分数据, 观察数据映射是否OK 	select * from itcast_ods.web_chat_ems limit 10; 	SELECT * FROM itcast_ods.web_chat_text_ems limit 10;

数据清洗转换

 目的: 将ODS层数据导入到DWD层

DWD层作用:  
    1) 清洗转换操作  2) 少量维度退化操作

思考1: 是否需要做清洗转换操作, 如果需要做什么呢?
    清洗操作: 不需要
    转换操作: 将create_time日期 转换为 yearinfo quarterinfo monthinfo dayinfo hourinfo
    额外加一个转换: 将create_time日期数据转换为时间戳
思考2: 是否需要进行维度退化操作, 如果需要做什么呢? 
    需要的, 将两个事实表合并称为一个事实表

--动态分区配置 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict; --hive压缩 set hive.exec.compress.intermediate=true; set hive.exec.compress.output=true; --写入时压缩生效 set hive.exec.orc.compression.strategy=COMPRESSION;   insert into table itcast_dwd.visit_consult_dwd partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     wce.session_id,     wce.sid,     unix_timestamp(wce.create_time) as create_time,       wce.seo_source,     wce.ip,     wce.area,     wce.msg_count,     wce.origin_channel,     wcte.referrer,     wcte.from_url,     wcte.landing_page_url,     wcte.url_title,     wcte.platform_description,     wcte.other_params,     wcte.history,     substr(wce.create_time,12,2) as hourinfo,     substr(wce.create_time,1,4) as yearinfo,      quarter(wce.create_time) as quarterinfo,     substr(wce.create_time,6,2) as monthinfo,     substr(wce.create_time,9,2) as dayinfo from itcast_ods.web_chat_ems wce join itcast_ods.web_chat_text_ems wcte     on wce.id = wcte.id;

 数据分析

目的: 将DWD层数据灌入到DWS层,一张大表里面分了好几个需求,按照-1区分。

访问量表:

访问量: 
    固有维度: 
                时间维度:  年 、季度 、月 、天 、小时
    产品属性维度:
                地区维度、来源渠道、搜索来源、受访页面、总访问量 

共计5*5=25个需求,25个需求放到一张表visit_dws中。数据量很大,模拟时选其中几个。

如何计算访问量:
以时间为基准,统计总访问量(5个需求)

--统计每年的总访问量
--统计每年每季度的总访问量
--统计每年每季度每月的总访问量
--统计每年每季度每月每天的总访问量
--统计每年每季度每月每天每小时的总访问量

-- 统计每年的总访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   yearinfo as time_str,   '-1' as from_url,   '5' as grouptype,   '5' as time_type,   yearinfo,   '-1' as quarterinfo,   '-1' as monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo; -- 统计每年每季度的总访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'_',quarterinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '4' as time_type,   yearinfo,   quarterinfo,   '-1' as monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo; -- 统计每年每季度每月的总访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'-',monthinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '3' as time_type,   yearinfo,   quarterinfo,   monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,monthinfo; -- 统计每年每季度每月每天的总访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'-',monthinfo,'-',dayinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '2' as time_type,   yearinfo,   quarterinfo,   monthinfo,   dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,monthinfo,dayinfo; -- 统计每年每季度每月每天每小时的总访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   hourinfo,   concat(yearinfo,'-',monthinfo,'-',dayinfo,' ',hourinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '1' as time_type,   yearinfo,   quarterinfo,   monthinfo,   dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo;
 基于时间统计各个受访页面的访问量(5个需求)

--统计每年各个受访页面的访问量
--统计每年,每季度各个受访页面的访问量
--统计每年,每季度,每月各个受访页面的访问量
--统计每年,每季度,每月.每天各个受访页面的访问量
--统计每年,每季度,每月.每天,每小时各个受访页面的访问量

-- 统计每年各个受访页面的访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   yearinfo as time_str,   from_url,   '4' as grouptype,   '5' as time_type,   yearinfo,   '-1' as quarterinfo,   '-1' as monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,from_url;  -- 统计每年,每季度各个受访页面的访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'_',quarterinfo) as time_str,   from_url,   '4' as grouptype,   '4' as time_type,   yearinfo,   quarterinfo,   '-1' as monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,from_url;  -- 统计每年,每季度,每月各个受访页面的访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'-',monthinfo) as time_str,   from_url,   '4' as grouptype,   '3' as time_type,   yearinfo,   quarterinfo,   monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,monthinfo,from_url;  -- 统计每年,每季度,每月.每天各个受访页面的访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'-',monthinfo,'-',dayinfo) as time_str,   from_url,   '4' as grouptype,   '2' as time_type,   yearinfo,   quarterinfo,   monthinfo,   dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,monthinfo,dayinfo,from_url; -- 统计每年,每季度,每月.每天,每小时各个受访页面的访问量 insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   hourinfo,   concat(yearinfo,'-',monthinfo,'-',dayinfo,' ',hourinfo) as time_str,   from_url,   '4' as grouptype,   '1' as time_type,   yearinfo,   quarterinfo,   monthinfo,   dayinfo from  itcast_dwd.visit_consult_dwd group by yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo,from_url;

咨询量表

咨询量
    维度: 
        固有维度:时间: 年 、季度、 月、 天、 小时
        产品属性维度:
            地区、来源渠道、总咨询量

咨询和访问的区别:
    msg_count >=1 即为咨询数据   

共有3*5=15个需求,15个需求放到一张表consult_dws中。数据量很大,模拟时选其中个。

如何计算咨询量:
基于时间统计总咨询量(5个需求)

--统计每年的总咨询量
--统计每年每季度的总咨询量
--统计每年每季度每月的总咨询量
--统计每年每季度每月每天的总咨询量
--统计每年每季度每月每天每小时的总咨询量

-- 统计每年的总咨询量 insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     '-1' as area,     '-1' as origin_channel,     '-1' as hourinfo,     yearinfo as time_str,     '3' as grouptype,     '5' as time_type,     yearinfo,     '-1' as quarterinfo,     '-1' as monthinfo,     '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 group by yearinfo; -- 统计每年每季度的总咨询量 insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     '-1' as area,     '-1' as origin_channel,     '-1' as hourinfo,     concat(yearinfo,'_',quarterinfo) as time_str,     '3' as grouptype,     '4' as time_type,     yearinfo,     quarterinfo,     '-1' as monthinfo,     '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 group by yearinfo,quarterinfo; -- 统计每年每季度每月的总咨询量 insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     '-1' as area,     '-1' as origin_channel,     '-1' as hourinfo,     concat(yearinfo,'-',monthinfo) as time_str,     '3' as grouptype,     '3' as time_type,     yearinfo,     quarterinfo,     monthinfo,     '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 group by yearinfo,quarterinfo,monthinfo; -- 统计每年每季度每月每天的总咨询量 insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     '-1' as area,     '-1' as origin_channel,     '-1' as hourinfo,     concat(yearinfo,'-',monthinfo,'-',dayinfo) as time_str,     '3' as grouptype,     '2' as time_type,     yearinfo,     quarterinfo,     monthinfo,     dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 group by yearinfo,quarterinfo,monthinfo,dayinfo; -- 统计每年每季度每月每天每小时的总咨询量 insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     '-1' as area,     '-1' as origin_channel,     hourinfo,     concat(yearinfo,'-',monthinfo,'-',dayinfo,' ',hourinfo) as time_str,     '3' as grouptype,     '1' as time_type,     yearinfo,     quarterinfo,     monthinfo,     dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 group by yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo;
基于时间,统计各个地区的咨询量(5个需求)

-- 统计每年各个地区的咨询量
-- 统计每年每季度各个地区的咨询量
-- 统计每年每季度每月各个地区的咨询量
-- 统计每年每季度每月每天各个地区的咨询量
-- 统计每年每季度每月每天每小时各个地区的咨询量

数据导出

 目的: 从hive的DWS层将数据导出到mysql中对应目标表中

第一步: 在mysql中创建目标表:创建数据库建表
create database scrm_bi default character set utf8mb4 collate utf8mb4_general_ci;  -- 访问量的结果表: CREATE TABLE IF NOT EXISTS scrm_bi.visit_dws (   sid_total INT COMMENT '根据sid去重求count',   sessionid_total INT COMMENT '根据sessionid去重求count',   ip_total INT COMMENT '根据IP去重求count',   area varchar(32) COMMENT '区域信息',   seo_source varchar(32) COMMENT '搜索来源',   origin_channel varchar(32) COMMENT '来源渠道',   hourinfo varchar(32) COMMENT '创建时间,统计至小时',   time_str varchar(32) COMMENT '时间明细',   from_url varchar(1000) comment '会话来源页面',   groupType varchar(32) COMMENT '产品属性类型:1.地区;2.搜索来源;3.来源渠道;4.会话来源页面;5.总访问量',   time_type varchar(32) COMMENT '时间聚合类型:1、按小时聚合;2、按天聚合;3、按月聚合;4、按季度聚合;5、按年聚合;',   yearinfo varchar(32) COMMENT '年' ,   quarterinfo varchar(32) COMMENT '季度',   monthinfo varchar(32) COMMENT '月',   dayinfo varchar(32) COMMENT '天' )comment 'EMS访客日志dws表';  -- 咨询量的结果表: CREATE TABLE IF NOT EXISTS scrm_bi.consult_dws (   sid_total INT COMMENT '根据sid去重求count',   sessionid_total INT COMMENT '根据sessionid去重求count',   ip_total INT COMMENT '根据IP去重求count',   area varchar(32) COMMENT '区域信息',   origin_channel varchar(32) COMMENT '来源渠道',   hourinfo varchar(32) COMMENT '创建时间,统计至小时',   time_str varchar(32) COMMENT '时间明细',   groupType varchar(32) COMMENT '产品属性类型:1.地区;2.来源渠道',   time_type varchar(32) COMMENT '时间聚合类型:1、按小时聚合;2、按天聚合;3、按月聚合;4、按季度聚合;5、按年聚合;',   yearinfo varchar(32) COMMENT '年' ,   quarterinfo varchar(32) COMMENT '季度',   monthinfo varchar(32) COMMENT '月',   dayinfo varchar(32) COMMENT '天' )COMMENT '咨询量DWS宽表';
 第二步执行sqoop的数据导出
-- 先导出 咨询量数据 sqoop export \ --connect "jdbc:mysql://192.168.52.150:3306/scrm_bi?useUnicode=true&characterEncoding=utf-8" \ --username root \ --password 123456 \ --table consult_dws \ --hcatalog-database itcast_dws \ --hcatalog-table consult_dws \ -m 1   -- 访问量数据导出 sqoop export \ --connect "jdbc:mysql://192.168.52.150:3306/scrm_bi?useUnicode=true&characterEncoding=utf-8" \ --username root \ --password 123456 \ --table visit_dws \ --hcatalog-database itcast_dws \ --hcatalog-table visit_dws \ -m 1

访问和咨询用户数据模块(增量分析):

模拟新增数据,实际生产过程中由需求方自行提供新增数据:

-- 模拟访问咨询主表数据 CREATE TABLE web_chat_ems_2021_09 AS SELECT *  FROM web_chat_ems_2019_07 WHERE  create_time BETWEEN '2019-07-01 00:00:00' AND '2019-07-01 23:59:59';  -- 修改表中的时间字段 UPDATE web_chat_ems_2021_09 SET create_time = CONCAT('2021-09-25 ',SUBSTR(create_time,12));   -- 模拟访问咨询附属表数据 CREATE TABLE web_chat_text_ems_2021_09 AS SELECT    temp2.* FROM (SELECT *  FROM web_chat_ems_2019_07  	WHERE  create_time BETWEEN '2019-07-01 00:00:00' AND '2019-07-01 23:59:59') temp1 	JOIN web_chat_text_ems_2019_07 temp2 ON temp1.id = temp2.id ;

 增量数据采集:

将增量的SQL集成到增量的sqoop脚本中,通过shell脚本的方式来执行, 通过脚本自动获取上一天的日期, 最后将shell脚本放置在ooize中, 进行自动化调度操作

编写增量数据采集的shell脚本

hadoop01: 家目录

cd /root

vim edu_mode_1_collect.sh

edu_mode_1_collect.sh脚本:此脚本能够实现自动获取上一天的日期数据, 并且还支持采集指定日期下数据,将shell脚本放置到ooize中,完成自动化调度操作。

#!/bin/bash  export SQOOP_HOME=/usr/bin/sqoop  if [ $# == 1 ]    then       dateStr=$1    else       dateStr=`date -d '-1 day' +'%Y-%m-%d'` fi  dateNowStr=`date +'%Y-%m-%d'`  yearStr=`date -d ${dateStr} +'%Y'` monthStr=`date -d ${dateStr} +'%m'`  jdbcUrl='jdbc:mysql://192.168.52.150:3306/nev' username='root' password='123456' m='1'  ${SQOOP_HOME} import \ --connect ${jdbcUrl} \ --username ${username} \ --password ${password} \ --query "SELECT  id,create_date_time,session_id,sid,create_time,seo_source,seo_keywords,ip, AREA,country,province,city,origin_channel,USER AS user_match,manual_time,begin_time,end_time, last_customer_msg_time_stamp,last_agent_msg_time_stamp,reply_msg_count, msg_count,browser_name,os_info, '${dateNowStr}' AS starts_time   FROM web_chat_ems_${yearStr}_${monthStr} WHERE create_time BETWEEN '${dateStr} 00:00:00' AND '${dateStr}  23:59:59' and \$CONDITIONS" \ --hcatalog-database itcast_ods \ --hcatalog-table web_chat_ems \ -m ${m}  ${SQOOP_HOME} import \ --connect ${jdbcUrl} \ --username ${username} \ --password ${password} \ --query "SELECT          temp2.*, '${dateNowStr}' AS start_time FROM (SELECT id FROM web_chat_ems_${yearStr}_${monthStr} WHERE create_time BETWEEN '${dateStr} 00:00:00'  AND '${dateStr} 23:59:59') temp1         JOIN web_chat_text_ems_${yearStr}_${monthStr} temp2 ON temp1.id = temp2.id where 1=1 and \$CONDIT IONS" \ --hcatalog-database itcast_ods \ --hcatalog-table web_chat_text_ems \ -m ${m}

测试脚本是否可以正常执行  

sh edu_mode_1_collect.sh   可以在hive中查看对应分区下的数据, 如果有, 说明抽取成功了 	select * from itcast_ods.web_chat_ems where starts_time='2021-09-26' limit 10;

注意:starts_time是当天抽取的当天日期,抽取的数据库中的表的数据是前一天的,所以建表的时候要把ceratetimes字段改为前一天的。比如今天是2021-09-26,我创建的表的名字是

也可以在抽取表的时候带上日期参数,这样可以随机抽取任意一天的数据。 

将shell脚本放置到ooize中,完成自动化调度操作  

增量数据清洗转换

仅需要对新增的这一天数据进行清洗转换操作,因为此时数据粒度是一致的,不需要对之前的数据做处理。

 在shell下执行hive的SQL

./hive -e|-f 'sql语句|SQL脚本' -S

编写shell脚本, 实现增量数据清洗转换操作

hadoop01:
    cd /root
    vim edu_mode_1_handle.sh 

#!/bin/bash  export HIVE_HOME=/usr/bin/hive  if [ $# == 1 ] then   dateStr=$1    else      dateStr=`date +'%Y-%m-%d'` fi  sqlStr=" set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict; set hive.exec.compress.intermediate=true; set hive.exec.compress.output=true; set hive.exec.orc.compression.strategy=COMPRESSION;  insert into table itcast_dwd.visit_consult_dwd partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     wce.session_id,     wce.sid,     unix_timestamp(wce.create_time) as create_time,       wce.seo_source,     wce.ip,     wce.area,     wce.msg_count,     wce.origin_channel,     wcte.referrer,     wcte.from_url,     wcte.landing_page_url,     wcte.url_title,     wcte.platform_description,     wcte.other_params,     wcte.history,     substr(wce.create_time,12,2) as hourinfo,     substr(wce.create_time,1,4) as yearinfo,      quarter(wce.create_time) as quarterinfo,     substr(wce.create_time,6,2) as monthinfo,     substr(wce.create_time,9,2) as dayinfo from (select * from itcast_ods.web_chat_ems where starts_time='${dateStr}') wce join (select * from itcast_ods.web_chat_text_ems where start_time='${dateStr}') wcte        on wce.id = wcte.id; "  ${HIVE_HOME} -e "${sqlStr}" -S

测试脚本:

sh edu_mode_1_handle.sh

测试数据是否产生:

select * from itcast_dwd.visit_consu1t_dwd where yearinfo='2024' and monthinfo='05'and dayinfo='23 '------这里测试的是数据产生的数据,也就是前一天的数据,日期是从create分出来的

 配置工作流:

增量数据统计分析

第一张表25个需求,第二张表15个需求,有点多, 各选5条模拟一下:

访问量:5条

-- 统计每年的总访问量 

-- 统计每年每季度的总访问量

-- 统计每年每季度每月的总访问量

-- 统计每年每季度每月每天的总访问量

-- 统计每年每季度每月每天每小时的总访问量

咨询量: 5条
-- 统计每年各个地区的咨询量

-- 统计每年每季度各个地区的咨询量

-- 统计每年每季度每月各个地区的咨询量

-- 统计每年每季度每月每天各个地区的咨询量

-- 统计每年每季度每月每天每小时各个地区的咨询量

dwd表是新增了上一天的数据,统计年的就把今年的全部统计,月的把这个月的全部统计,不是就统计前一天的,所以将昨天的数据加入后再统计一遍年的,月的,季度的,以此类推……

说明:

在统计年的时候, 只需要统计加上这一天以后这一年的数据即可, 之前年的数据是不需要统计的
在统计季度的时候,只需要统计加上这一天以后这一年对应的这一季度的数据即可, 之前的季度是不需要统计的
在统计月份的时候, 只需要统计加上这一天以后这一年对应的这一月份的数据即可,之前的月份不需要统计
在统计天的时候, 只需要统计新增的这一天即可
在统计小时的时候, 只需要统计新增的这一天的每个小时

思考: 在统计的过程中, 比如以年统计, 得到一个新的年的统计结果, 那么在DWS层表中是不是还有一个历史的结果呢? 如何解决呢?

比如今天是2024-5-4,昨天已经统计了今年的数据了,今天又统计一遍,需要把昨天的历史数据删除,但hive不支持个别数据的删除。

说明:    
    在统计的过程中, 会对之前的统计结果产生影响, 主要受影响:年,季度,月
    注意: 天 和 小时是不受历史结果影响

解决方案:
    将之前的结果受影响的结果值删除即可

如何删除呢?  注意hive不支持直接对表中某条数据删除
    可以通过删除分区的方案进行处理

思考:
    当年的统计结构数据在那个分区下存储着呢?

        此分区了存储了按年统计的各个产品属性维度的结果数据
        yearinfo='2021' and quarterinfo='-1' and monthinfo ='-1' and dayinfo='-1'
        此分区存储了当年当季度的统计数据
        yearinfo='2021' and quarterinfo='3' and monthinfo ='-1' and dayinfo='-1'
        此分区存储了当年当季度当月的统计数据
        yearinfo='2021' and quarterinfo='3' and monthinfo ='09' and dayinfo='-1'

执行删除:
    alter table xxx drop partition(yearinfo='2021' and quarterinfo='-1' and monthinfo ='-1' and dayinfo='-1');
    alter table xxx drop partition(yearinfo='2021' and quarterinfo='3' and monthinfo ='-1' and dayinfo='-1');
    alter table xxx drop partition(yearinfo='2021' and quarterinfo='3' and monthinfo ='09' and dayinfo='-1');

 注意:先删后加!!!

 编写脚本:

hadoop01:
cd /root
vim edu_mode_1_analyse.sh 

#!/bin/bash export HIVE_HOME=/usr/bin/hive  if [ $# == 1 ]  then    dateStr=$1        else        dateStr=`date -d '-1 day' +'%Y-%m-%d'`  fi  yearStr=`date -d ${dateStr} +'%Y'`  monthStr=`date -d ${dateStr} +'%m'`  month_for_quarter=`date -d ${dateStr} +'%-m'` quarterStr=$((($month_for_quarter-1)/3+1))  dayStr=`date -d ${dateStr} +'%d'`   sqlStr=" set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict; set hive.exec.compress.intermediate=true; set hive.exec.compress.output=true; set hive.exec.orc.compression.strategy=COMPRESSION;  alter table itcast_dws.visit_dws drop partition(yearinfo='${yearStr}',quarterinfo='-1',monthinfo='-1',dayinfo='-1'); alter table itcast_dws.visit_dws drop partition(yearinfo='${yearStr}',quarterinfo='${quarterStr}',monthinfo='-1',dayinfo='-1'); alter table itcast_dws.visit_dws drop partition(yearinfo='${yearStr}',quarterinfo='${quarterStr}',monthinfo='${monthStr}}',dayinfo='-1');  alter table itcast_dws.consult_dws drop partition(yearinfo='${yearStr}',quarterinfo='-1',monthinfo='-1',dayinfo='-1'); alter table itcast_dws.consult_dws drop partition(yearinfo='${yearStr}',quarterinfo='${quarterStr}',monthinfo='-1',dayinfo='-1'); alter table itcast_dws.consult_dws drop partition(yearinfo='${yearStr}',quarterinfo='${quarterStr}',monthinfo='${monthStr}}',dayinfo='-1');  insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   yearinfo as time_str,   '-1' as from_url,   '5' as grouptype,   '5' as time_type,   yearinfo,   '-1' as quarterinfo,   '-1' as monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where yearinfo='${yearStr}' group by yearinfo;  insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'_',quarterinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '4' as time_type,   yearinfo,   quarterinfo,   '-1' as monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where yearinfo='${yearStr}' and quarterinfo='${quarterStr}' group by yearinfo,quarterinfo;  insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'-',monthinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '3' as time_type,   yearinfo,   quarterinfo,   monthinfo,   '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where  yearinfo='${yearStr}' and quarterinfo='${quarterStr}' and monthinfo='${monthStr}' group by yearinfo,quarterinfo,monthinfo;  insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   '-1' as hourinfo,   concat(yearinfo,'-',monthinfo,'-',dayinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '2' as time_type,   yearinfo,   quarterinfo,   monthinfo,   dayinfo from  itcast_dwd.visit_consult_dwd where  yearinfo='${yearStr}' and quarterinfo='${quarterStr}' and monthinfo='${monthStr}' and dayinfo='${dayStr}' group by yearinfo,quarterinfo,monthinfo,dayinfo;  insert into table itcast_dws.visit_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select     count(distinct sid) as  sid_total,   count(distinct session_id) as sessionid_total,   count(distinct ip) as ip_total,   '-1' as area,   '-1' as seo_source,   '-1' as origin_channel,   hourinfo,   concat(yearinfo,'-',monthinfo,'-',dayinfo,' ',hourinfo) as time_str,   '-1' as from_url,   '5' as grouptype,   '1' as time_type,   yearinfo,   quarterinfo,   monthinfo,   dayinfo from  itcast_dwd.visit_consult_dwd where  yearinfo='${yearStr}' and quarterinfo='${quarterStr}' and monthinfo='${monthStr}' and dayinfo='${dayStr}' group by yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo;   insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     area,     '-1' as origin_channel,     '-1' as hourinfo,     yearinfo as time_str,     '1' as grouptype,     '5' as time_type,     yearinfo,     '-1' as quarterinfo,     '-1' as monthinfo,     '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 and yearinfo='${yearStr}' group by yearinfo,area;  insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     area,     '-1' as origin_channel,     '-1' as hourinfo,     concat(yearinfo,'_',quarterinfo) as time_str,     '1' as grouptype,     '4' as time_type,     yearinfo,     quarterinfo,     '-1' as monthinfo,     '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 and yearinfo='${yearStr}' and quarterinfo='${quarterStr}' group by yearinfo,quarterinfo,area;  insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     area,     '-1' as origin_channel,     '-1' as hourinfo,     concat(yearinfo,'-',monthinfo) as time_str,     '1' as grouptype,     '3' as time_type,     yearinfo,     quarterinfo,     monthinfo,     '-1' as dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 and yearinfo='${yearStr}' and quarterinfo='${quarterStr}' and monthinfo='${monthStr}' group by yearinfo,quarterinfo,monthinfo,area;  insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     area,     '-1' as origin_channel,     '-1' as hourinfo,     concat(yearinfo,'-',monthinfo,'-',dayinfo) as time_str,     '1' as grouptype,     '2' as time_type,     yearinfo,     quarterinfo,     monthinfo,     dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 and yearinfo='${yearStr}' and quarterinfo='${quarterStr}' and monthinfo='${monthStr}' and dayinfo='${dayStr}' group by yearinfo,quarterinfo,monthinfo,dayinfo,area;  insert into table itcast_dws.consult_dws partition(yearinfo,quarterinfo,monthinfo,dayinfo) select       count(distinct sid) as sid_total,     count(distinct session_id) as sessionid_total,     count(distinct ip) as ip_total,     area,     '-1' as origin_channel,     hourinfo,     concat(yearinfo,'-',monthinfo,'-',dayinfo,' ',hourinfo) as time_str,     '1' as grouptype,     '1' as time_type,     yearinfo,     quarterinfo,     monthinfo,     dayinfo from  itcast_dwd.visit_consult_dwd where msg_count >= 1 and yearinfo='${yearStr}' and quarterinfo='${quarterStr}' and monthinfo='${monthStr}' and dayinfo='${dayStr}' group by yearinfo,quarterinfo,monthinfo,dayinfo,hourinfo,area;  "  ${HIVE_HOME} -e "${sqlStr}" -S 

测试:

sh  edu_mode_1_analyse.sh

 在hive中测试:

select  * from itcast_dws.visit_dws where  yearinfo='2024';

上传到工作流:

增量数据导出操作

 说明:

在执行导出的时候, 也需要将mysql中之前的统计的当年当季度和当月的结果数据删除, 然后重新导入操作

    此时我们处理的方案, 要进行简化一些, 受影响最大范围当年的数据,  可以直接将当年的统计结果数据全部都删除, 然后重新到DWS层当年的所有数据,就是将当年的那个分区数据导出即可。(MySQL可以直接删除)

编写脚本:

hadoop01: 
    cd /root
    vim edu_mode_1_export.sh

#!/bin/bash  export SQOOP_HOME=/usr/bin/sqoop  if [ $# == 1 ] then    TD_DATE=$1   else    TD_DATE=`date -d '-1 day' +'%Y-%m-%d'` fi  TD_YEAR=`date -d ${TD_DATE} +%Y`  mysql -uroot -p123456 -h192.168.52.150 -P3306 -e "delete from scrm_bi.visit_dws where yearinfo='$TD_YEAR'; delete from scrm_bi.consult_dws where yearinfo='$TD_YEAR';"  jdbcUrl='jdbc:mysql://192.168.52.150:3306/scrm_bi?useUnicode=true&characterEncoding=utf-8' username='root' password='123456'  ${SQOOP_HOME} export \ --connect ${jdbcUrl} \ --username ${username} \ --password ${password} \ --table visit_dws \ --hcatalog-database itcast_dws \ --hcatalog-table visit_dws \ --hcatalog-partition-keys yearinfo \ --hcatalog-partition-values $TD_YEAR \ -m 1  ${SQOOP_HOME} export \ --connect ${jdbcUrl} \ --username ${username} \ --password ${password} \ --table consult_dws \ --hcatalog-database itcast_dws \ --hcatalog-table consult_dws \ --hcatalog-partition-keys yearinfo \ --hcatalog-partition-values $TD_YEAR \ -m 1

测试:在本地MySQL中:

select * from scrm_bi.visit_dws where yearinfo='2024';

 上传到工作流:

 访问和咨询用户数据模块工作到此结束,后续模块请点击:

hadoop学习---基于Hive的教育平台数据仓库分析案例(二)

后接第三部分,第三部分请点击:基于Hive的教育平台数据仓库分析案例   (三) 

相关内容

热门资讯

9次识别wpk德州俱乐部机器人... 您好,wpk这款游戏可以开挂的,确实是有挂的,需要了解加微【485275054】很多玩家在这款游戏中...
八分钟识别微扑克wpk辅助软件... 八分钟识别微扑克wpk辅助软件(插件)wpk德州测试外挂(2024已更新)(哔哩哔哩);1、让任何用...
研究成果(云扑克内置)软件透明... 研究成果(云扑克内置)软件透明挂(辅助挂)外挂透明挂插件(2022已更新)(哔哩哔哩);1.云扑克内...
8分钟下载wpk ai辅助(神... 8分钟下载wpk ai辅助(神器)线上wpk到底有外挂(2021已更新)(哔哩哔哩);1、这是跨平台...
6分钟最新版wpk ai辅助(... 6分钟最新版wpk ai辅助(脚本)wepoke智能ai(2020已更新)(哔哩哔哩);wepoke...
详细辅助(来玩德州扑克)软件透... 详细辅助(来玩德州扑克)软件透明挂(辅助挂)透明挂神器(2024已更新)(哔哩哔哩);1、点击下载安...
一分钟揭秘(红龙扑克)软件透明... 一分钟揭秘(红龙扑克)软件透明挂(辅助挂)外挂透明挂神器(2023已更新)(哔哩哔哩)是一款可以让一...
3分钟机制wpk辅助神器(脚本... 您好,微扑克这款游戏可以开挂的,确实是有挂的,需要了解加微【757446909】很多玩家在这款游戏中...
7分钟ai代打wepoke辅助... 《7分钟ai代打wepoke辅助有挂的(脚本)wpk胜率跟号有关的(2025已更新)(哔哩哔哩)》 ...
七次插件wepoke软件透明(... 您好,微扑克这款游戏可以开挂的,确实是有挂的,需要了解加微【485275054】很多玩家在这款游戏中...