关于将Pytorch模型部署到安卓移动端方法总结
创始人
2025-01-15 20:03:48
0

一、Android Studio环境配置

1.安装包下载问题解决

在Android Studio官网下载编译工具时,会出现无法下载的问题,可右键复制下载链接IDMan中进行下载。

2.安装

安装过程中,需要将Android Virtual Device勾选,否则无法使用虚拟机。

安装启动后,会提示没有SDK,设置代码,直接选择cancel键。

完后,会有专门的SKD组件的安装,但是会有unavailable不可安装的情况出现,可通过创建项目后配置gradle后便可以安装了。

二、项目创建

软件安装后可能出现打不开的情况,可选择以管理员身份启动即可解决问题。

选择New Project

选择喜欢的界面样式即可。

使用语言、SDK根据自行需求进行选择就行。

Build configuration language建议选择Kotlin DSL(build.gradle.kts)[Recommended],否则会出现缺少gradle文件的情况。

创建完后会出现如下项目目录,并不会直接出现app的文件夹,需要手动配置gradle。

按照如下目录gradle/wrapper/gradle-wrapper.properties修改distributionUrl为本地地址。(根据原先的地址下载对应的压缩包)

#Wed May 01 21:02:04 CST 2024 distributionBase=GRADLE_USER_HOME distributionPath=wrapper/dists distributionUrl=https\://services.gradle.org/distributions/gradle-8.4-bin.zip zipStoreBase=GRADLE_USER_HOME zipStorePath=wrapper/dists  更变为 #Wed May 01 21:02:04 CST 2024 distributionBase=GRADLE_USER_HOME distributionPath=wrapper/dists # 对应的gradle-8.4-bin.zip本地地址即可 distributionUrl=file:///D://Android//gradle-8.4-bin.zip zipStoreBase=GRADLE_USER_HOME zipStorePath=wrapper/dists

在settings.gradle.kts更换阿里源(直接复制粘贴即可)

 pluginManagement {     repositories {         maven { url=uri ("https://www.jitpack.io")}         maven { url=uri ("https://maven.aliyun.com/repository/releases")}         maven { url=uri ("https://maven.aliyun.com/repository/google")}         maven { url=uri ("https://maven.aliyun.com/repository/central")}         maven { url=uri ("https://maven.aliyun.com/repository/gradle-plugin")}         maven { url=uri ("https://maven.aliyun.com/repository/public")}          google()         mavenCentral()         gradlePluginPortal()     } } dependencyResolutionManagement {     repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)     repositories {         maven { url=uri ("https://www.jitpack.io")}         maven { url=uri ("https://maven.aliyun.com/repository/releases")}         maven { url=uri ("https://maven.aliyun.com/repository/google")}         maven { url=uri ("https://maven.aliyun.com/repository/central")}         maven { url=uri ("https://maven.aliyun.com/repository/gradle-plugin")}         maven { url=uri ("https://maven.aliyun.com/repository/public")}           google()         mavenCentral()     } }  rootProject.name = "Helloword" include(":app") 

在build.gradle.kts中点击sync now即可自动配置,稍等即可便可变成app文件夹的形式。

选择Project,变成全部文件的形式。

初始新建项目即刻完成。

三、训练模型权重转化

需将训练好的.pth文件转化为.pt文件

""" 该程序使用的是resnet32网络,用到其他网络可自行更改 保存的权重字典目录如下所示。       ckpt = {             'weight': model.state_dict(),             'epoch': epoch,             'cfg': opt.model,             'index': name         } """ from models.resnet_cifar import resnet32  # 确保引用你的正确模型架构 import torch import torch.nn as nn # 假设你的ResNet定义在resnet.py文件中 model = resnet32() num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 100)  # 修改这里的100为你的类别数  # 加载权重 checkpoint = torch.load('modelleader_best.pth', map_location=torch.device('cpu')) model.load_state_dict(checkpoint['weight'], strict=False)  # 使用strict=False可以忽略不匹配的键  model.eval() # 将模型转换为TorchScript example_input = torch.rand(1, 3, 32, 32)  # 修改这里以匹配你的模型输入尺寸 traced_script_module = torch.jit.trace(model, example_input) traced_script_module.save("model.pt")

四、Pytorch项目搭建工作

在如下目录下创建assets文件,将转化好的模型放在里面即可,切记不可直接创建文件夹,会出现找不到模型问题。

在com/example/myapplication下创建了两个类cifarClassed,MainActivity。

MainActivity类 
package com.example.myapplication;  import android.content.Context; import android.content.Intent; import android.content.pm.PackageManager; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.os.Bundle; import android.provider.MediaStore; import android.util.Log; import android.view.View; import android.widget.Button; import android.widget.ImageView; import android.widget.TextView;  import androidx.annotation.NonNull; import androidx.appcompat.app.AppCompatActivity; import androidx.core.app.ActivityCompat; import androidx.core.content.ContextCompat; import androidx.core.content.FileProvider;  import org.pytorch.IValue; import org.pytorch.Module; import org.pytorch.Tensor; import org.pytorch.torchvision.TensorImageUtils;  import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream;  public class MainActivity extends AppCompatActivity {     private static final int PERMISSION_REQUEST_CODE = 101;      private static final int REQUEST_IMAGE_CAPTURE = 1;     private static final int REQUEST_IMAGE_SELECT = 2;     private ImageView imageView;     private TextView textView;     private Module module;      @Override     protected void onCreate(Bundle savedInstanceState) {         super.onCreate(savedInstanceState);         setContentView(R.layout.activity_main);          // 检查相机权限         if (ContextCompat.checkSelfPermission(this, android.Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {             ActivityCompat.requestPermissions(this, new String[]{android.Manifest.permission.CAMERA}, PERMISSION_REQUEST_CODE);         }          imageView = findViewById(R.id.image);         textView = findViewById(R.id.text);         ImageView logoImageView = findViewById(R.id.logo);         logoImageView.setImageResource(R.drawable.logo);           Button takePhotoButton = findViewById(R.id.button_take_photo);         Button selectImageButton = findViewById(R.id.button_select_image);          takePhotoButton.setOnClickListener(v -> dispatchTakePictureIntent());         selectImageButton.setOnClickListener(v -> dispatchGalleryIntent());          try {             module = Module.load(assetFilePath(this, "model.pt"));         } catch (IOException e) {             Log.e("PytorchHelloWorld", "Error reading assets", e);             finish();         }     }     @Override     public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull int[] grantResults) {         super.onRequestPermissionsResult(requestCode, permissions, grantResults);         if (requestCode == PERMISSION_REQUEST_CODE) {             if (grantResults.length > 0 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {                 // 权限被授予                 Log.d("Permissions", "Camera permission granted");             } else {                 // 权限被拒绝                 Log.d("Permissions", "Camera permission denied");             }         }     }     private void dispatchTakePictureIntent() {         Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);         if (takePictureIntent.resolveActivity(getPackageManager()) != null) {             startActivityForResult(takePictureIntent, REQUEST_IMAGE_CAPTURE);         }     }      private void dispatchGalleryIntent() {         Intent intent = new Intent(Intent.ACTION_PICK, MediaStore.Images.Media.EXTERNAL_CONTENT_URI);         startActivityForResult(intent, REQUEST_IMAGE_SELECT);     }      @Override     protected void onActivityResult(int requestCode, int resultCode, Intent data) {         super.onActivityResult(requestCode, resultCode, data);         if (resultCode == RESULT_OK && (requestCode == REQUEST_IMAGE_CAPTURE || requestCode == REQUEST_IMAGE_SELECT)) {             Bitmap imageBitmap = null;             if (requestCode == REQUEST_IMAGE_CAPTURE) {                 Bundle extras = data.getExtras();                 imageBitmap = (Bitmap) extras.get("data");             } else if (requestCode == REQUEST_IMAGE_SELECT) {                 try {                     imageBitmap = MediaStore.Images.Media.getBitmap(this.getContentResolver(), data.getData());                 } catch (IOException e) {                     e.printStackTrace();                 }             }             imageView.setImageBitmap(imageBitmap);             classifyImage(imageBitmap);         }     }  //    private void classifyImage(Bitmap bitmap) { //        Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(bitmap, //                TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB); //        Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor(); //        float[] scores = outputTensor.getDataAsFloatArray(); //        float maxScore = -Float.MAX_VALUE; //        int maxScoreIdx = -1; //        for (int i = 0; i < scores.length; i++) { //            if (scores[i] > maxScore) { //                maxScore = scores[i]; //                maxScoreIdx = i; //            } //        } //        textView.setText("推理结果:" + CifarClassed.IMAGENET_CLASSES[maxScoreIdx]); //        textView.setVisibility(View.VISIBLE); // 设置 TextView 可见 //    } //    private void classifyImage(Bitmap bitmap) { //        // 调整图像大小为 32x32 像素 //        Bitmap resizedBitmap = resizeBitmap(bitmap, 32, 32); // //        // 将调整大小后的图像转换为 PyTorch Tensor //        Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(resizedBitmap, //                new float[]{0.485f, 0.456f, 0.406f}, // 均值 Mean //                new float[]{0.229f, 0.224f, 0.225f}); // 标准差 Std // //        // 推理 //        Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor(); //        float[] scores = outputTensor.getDataAsFloatArray(); //        float maxScore = -Float.MAX_VALUE; //        int maxScoreIdx = -1; //        for (int i = 0; i < scores.length; i++) { //            if (scores[i] > maxScore) { //                maxScore = scores[i]; //                maxScoreIdx = i; //            } //        } //        textView.setText("推理结果:" + CifarClassed.IMAGENET_CLASSES[maxScoreIdx]); //        textView.setVisibility(View.VISIBLE); // 设置 TextView 可见 //    } //     private float[] softmax(float[] scores) {         float max = Float.NEGATIVE_INFINITY;         for (float score : scores) {             if (score > max) max = score;         }         float sum = 0.0f;         float[] exps = new float[scores.length];         for (int i = 0; i < scores.length; i++) {             exps[i] = (float) Math.exp(scores[i] - max); // 减去最大值防止指数爆炸             sum += exps[i];         }         for (int i = 0; i < exps.length; i++) {             exps[i] /= sum; // 归一化         }         return exps;     }      // 图像分类方法     private void classifyImage(Bitmap bitmap) {         // 调整图像大小为 32x32 像素         Bitmap resizedBitmap = resizeBitmap(bitmap, 32, 32);          // 将调整大小后的图像转换为 PyTorch Tensor         Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(resizedBitmap,                 new float[]{0.485f, 0.456f, 0.406f}, // 使用训练时相同的均值 Mean                 new float[]{0.229f, 0.224f, 0.225f}); // 使用训练时相同的标准差 Std          // 推理         Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor();         float[] scores = outputTensor.getDataAsFloatArray();         // 应用自定义的 Softmax 函数获取概率分布         float[] probabilities = softmax(scores);         float maxScore = -Float.MAX_VALUE;         int maxScoreIdx = -1;         for (int i = 0; i < probabilities.length; i++) {             if (probabilities[i] > maxScore) {                 maxScore = probabilities[i];                 maxScoreIdx = i;             }         }          // 更新 UI 必须在主线程中完成         final int maxIndex = maxScoreIdx;         final float finalMaxScore = maxScore;         runOnUiThread(new Runnable() {             @Override             public void run() {                 textView.setText("推理结果:" + CifarClassed.IMAGENET_CLASSES[maxIndex] + " (" + String.format("%.2f%%", finalMaxScore * 100) + ")");                 textView.setVisibility(View.VISIBLE); // 设置 TextView 可见             }         });     }  ///      //     // 方法来调整 Bitmap 的大小     private Bitmap resizeBitmap(Bitmap originalBitmap, int targetWidth, int targetHeight) {         return Bitmap.createScaledBitmap(originalBitmap, targetWidth, targetHeight, false);     }      public static String assetFilePath(Context context, String assetName) throws IOException {         File file = new File(context.getFilesDir(), assetName);         if (file.exists() && file.length() > 0) {             return file.getAbsolutePath();         }          try (InputStream is = context.getAssets().open(assetName)) {             try (OutputStream os = new FileOutputStream(file)) {                 byte[] buffer = new byte[4 * 1024];                 int read;                 while ((read = is.read(buffer)) != -1) {                     os.write(buffer, 0, read);                 }                 os.flush();             }             return file.getAbsolutePath();         }     }  } 

CifarClassed类
package com.example.myapplication;   public class CifarClassed {     public static String[] IMAGENET_CLASSES = new String[]{             "apple", "aquarium_fish", "baby", "bear", "beaver", "bed", "bee", "beetle",             "bicycle", "bottle", "bowl", "boy", "bridge", "bus", "butterfly", "camel",             "can", "castle", "caterpillar", "cattle", "chair", "chimpanzee", "clock",             "cloud", "cockroach", "couch", "crab", "crocodile", "cup", "dinosaur",             "dolphin", "elephant", "flatfish", "forest", "fox", "girl", "hamster", "house",             "kangaroo", "keyboard", "lamp", "lawn_mower", "leopard", "lion", "lizard",             "lobster", "man", "maple_tree", "motorcycle", "mountain", "mouse", "mushroom",             "oak_tree", "orange", "orchid", "otter", "palm_tree", "pear", "pickup_truck",             "pine_tree", "plain", "plate", "poppy", "porcupine", "possum", "rabbit", "raccoon",             "ray", "road", "rocket", "rose", "sea", "seal", "shark", "shrew", "skunk",             "skyscraper", "snail", "snake", "spider", "squirrel", "streetcar", "sunflower",             "sweet_pepper", "table", "tank", "telephone", "television", "tiger", "tractor",             "train", "trout", "tulip", "turtle", "wardrobe", "whale", "willow_tree", "wolf",             "woman", "worm"     }; }  

页面布局存放在MyApplication\app\src\main\res\layout\activity_main.xml文件中。

                                                              

在MyApplication\app\src\main\res\drawable\circle_shape.xml(自行创建)

                 

在MyApplication\app\src\main\res\drawable\rounded_background(自行创建)

                 

在MyApplication\app\src\main\AndroidManifest.xml添加相机与读取照片的权限。

                                                                                                               

app级别build.gradle.kts(MyApplication\app\build.gradle.kts)配置如下。

plugins {     alias(libs.plugins.androidApplication) }  android {     namespace = "com.example.myapplication"     compileSdk = 34     sourceSets {         getByName("main") {             jniLibs.srcDir("libs")         }     }      packaging {         resources.excludes.add("META-INF/*")     }       defaultConfig {         applicationId = "com.example.myapplication"         minSdk = 24         targetSdk = 34         versionCode = 1         versionName = "1.0"         testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"     }      buildTypes {         release {             isMinifyEnabled = false             proguardFiles(getDefaultProguardFile("proguard-android-optimize.txt"), "proguard-rules.pro")         }     }      compileOptions {         sourceCompatibility = JavaVersion.VERSION_1_8         targetCompatibility = JavaVersion.VERSION_1_8     } }   dependencies {     // 使用 alias 来指定库,确保 libs.aliases.gradle 中已经定义了这些别名     implementation(libs.appcompat)     implementation(libs.material)     implementation(libs.activity)     implementation(libs.constraintlayout)     testImplementation(libs.junit)     androidTestImplementation(libs.ext.junit)     androidTestImplementation(libs.espresso.core)     implementation("org.pytorch:pytorch_android:1.12.1")     implementation("org.pytorch:pytorch_android_torchvision:1.12.1")     implementation("com.google.android.exoplayer:exoplayer:2.14.1")     implementation("androidx.localbroadcastmanager:localbroadcastmanager:1.0.0")     implementation("androidx.activity:activity:1.2.0")     implementation("androidx.fragment:fragment:1.3.0")     implementation("de.hdodenhof:circleimageview:3.1.0")     } 

这段可解决如下bug。

    packaging {         resources.excludes.add("META-INF/*")     }
Caused by: com.android.builder.merge.DuplicateRelativeFileException: 2 files found with path ‘META-INF/androidx.core_core.version’.

手动添加非常麻烦,因为不止一个文件冲突!!!

完成以上步骤再按下Sync Now完成依赖的配置工作,需在编译器中自行选择虚拟设备。

完成后即可在MainActivity.java文件启动项目。

五、APK安装包导出

 点击create创建即可,便可得到apk文件。

六、效果图

相关内容

热门资讯

实操分享(GG扑克)软件透明挂... 【福星临门,好运相随】;实操分享(GG扑克)软件透明挂(辅助挂)透明辅助挂辅助器(2022已更新)(...
揭秘关于(WPK黑科技)软件透... 揭秘关于(WPK黑科技)软件透明挂(透视)外挂辅助器工具(2022已更新)(哔哩哔哩);超受欢迎的W...
1分钟了解(WePoKe)软件... 1分钟了解(WePoKe)软件透明挂(辅助挂)透明挂工具(2024已更新)(哔哩哔哩);相信小伙伴都...
必看攻略(德州wpk德州)软件... 必看攻略(德州wpk德州)软件透明挂(辅助挂)透明辅助挂软件(2022已更新)(哔哩哔哩);1、完成...
第六辅助挂(大厅wpk)软件透... 第六辅助挂(大厅wpk)软件透明挂(透视)外挂辅助器软件(2024已更新)(哔哩哔哩);致您一封信;...
8分钟了解花花生活圈app脚本... 您好,花花生活圈app脚本这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩...
发现一款(微扑克)软件透明挂(... 发现一款(微扑克)软件透明挂(透视)外挂辅助器透视挂(2022已更新)(哔哩哔哩)是一款可以让一直输...
最新通报(竞技德州联盟扑克)软... 最新通报(竞技德州联盟扑克)软件透明挂(辅助挂)透明辅助挂脚本(2021已更新)(哔哩哔哩);竞技德...
揭秘真相骨牌透视外挂!太难了原... 相信很多朋友都在电脑上玩过骨牌透视外挂吧,但是很多朋友都在抱怨用电脑玩起来不方便。为此小编给大家带来...
热点推荐(Wepoke脚本)软... 热点推荐(Wepoke脚本)软件透明挂(透视)外挂辅助器神器(2025已更新)(哔哩哔哩);Wepo...