SQL统计连续登陆3天的用户(连续活跃超3天用户)
创始人
2025-01-15 15:33:32
0

SQL统计连续登陆3天的用户(连续活跃超3天用户)

目录

    • SQL统计连续登陆3天的用户(连续活跃超3天用户)
      • 1. 数据准备
      • 2. 方法一: 差值计算
      • 3. 方法二: lead或lag函数
        • end

1. 数据准备

-- 数据准备 WITH user_active_info AS ( SELECT * FROM (     VALUES ('10001' , '2023-02-01'),('10001' , '2023-02-03')           ,('10001' , '2023-02-04'),('10001' , '2023-02-05')           ,('10002' , '2023-02-02'),('10002' , '2023-02-03')           ,('10002' , '2023-02-04'),('10002' , '2023-02-05')           ,('10002' , '2023-02-07'),('10003' , '2023-02-02')           ,('10003' , '2023-02-03'),('10003' , '2023-02-04')           ,('10003' , '2023-02-05'),('10003' , '2023-02-06')           ,('10003' , '2023-02-07'),('10003' , '2023-02-08')           ,('10004' , '2023-02-03'),('10004' , '2023-02-04')           ,('10004' , '2023-02-06'),('10004' , '2023-02-07')           ,('10004' , '2023-02-08'),('10004' , '2023-02-08')      	  ,('10005' , '2023-02-02'),('10005' , '2023-02-05')  ) AS user_active_info(user_id, active_date)  ) 

2. 方法一: 差值计算

-- 1. 对用户数据进行分组,按照活跃日期进行排序(去重:防止有一天有多次活跃记录) SELECT        user_id     , active_date     , ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn  FROM user_active_info GROUP BY user_id , active_date ;  
user_idactive_datern
100012023-02-011
100012023-02-032
100012023-02-043
100012023-02-054
100022023-02-021
100022023-02-032
100022023-02-043
100022023-02-054
100022023-02-075
-- 2. 使用活跃日期和排序rn进行差值计算,得到的日期如果是相等的,就说明活跃日期是连续的 SELECT        user_id     , active_date     , rn      , DATE_SUB(active_date,rn) AS sub_date FROM (     SELECT            user_id         , active_date         , ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn      FROM user_active_info      GROUP BY user_id , active_date     ) a ;  
user_idactive_daternsub_date
100012023-02-0112023-01-31
100012023-02-0322023-02-01
100012023-02-0432023-02-01
100012023-02-0542023-02-01
100022023-02-0212023-02-01
100022023-02-0322023-02-01
100022023-02-0432023-02-01
100022023-02-0542023-02-01
100022023-02-0752023-02-02
-- 3. 按照user_id和sub_date 进行分组求和,筛选出连续登陆天数大于3天的用户 SELECT        user_id     , MIN(active_date) AS begin_date     , MAX(active_date) AS end_date     , COUNT (1) AS login_duration FROM (     SELECT            user_id         , active_date         , rn          , DATE_SUB(active_date,rn) AS sub_date     FROM (         SELECT                user_id             , active_date             , ROW_NUMBER() OVER(PARTITION BY user_id ORDER BY active_date) AS rn          FROM user_active_info          GROUP BY user_id , active_date     ) a ) b GROUP BY user_id , sub_date HAVING login_duration >= 3 ;  
user_idbegin_dateend_datelogin_duration
100012023-02-032023-02-053
100022023-02-022023-02-054
100032023-02-022023-02-087
100042023-02-062023-02-083

3. 方法二: lead或lag函数

-- 1. 将active_date 上抬2行,不存在默认为'0'(计算连续活跃3天以上的, 上抬2行,n天上抬n-1行)(去重:防止有一天有多次活跃记录) SELECT        user_id     , active_date     , lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date  FROM user_active_info GROUP BY user_id , active_date 
user_idactive_datelead_active_date
100012023-02-012023-02-04
100012023-02-032023-02-05
100012023-02-040
100012023-02-050
100022023-02-022023-02-04
100022023-02-032023-02-05
100022023-02-042023-02-07
100022023-02-050
100022023-02-070
-- 2. 过滤筛选出, lead_active_date 与 active_date 差值为2的, 差值2 -> 连续活跃了3天 SELECT        user_id , active_date , lead_active_date FROM (     SELECT            user_id         , active_date         , lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date     FROM user_active_info     GROUP BY user_id , active_date ) a  WHERE  lead_active_date != '0'     AND DATEDIFF(lead_active_date , active_date) = 2 
user_idactive_datelead_active_date
100012023-02-032023-02-05
100022023-02-022023-02-04
100022023-02-032023-02-05
-- 3. user_id 去重, 得到连续活跃天数>=3天的用户 SELECT        user_id FROM (     SELECT            user_id , active_date , lead_active_date     FROM (         SELECT                user_id             , active_date             , lead(active_date , 2 , 0) OVER(PARTITION BY user_id ORDER BY active_date) AS lead_active_date          FROM user_active_info         GROUP BY user_id , active_date     ) a      WHERE  lead_active_date != '0'         AND DATEDIFF(lead_active_date , active_date) = 2 ) b GROUP BY user_id 
user_id
10001
10002
10003
10004
end

相关内容

热门资讯

必看攻略!微扑克智能ai辅助,... 必看攻略!微扑克智能ai辅助,微扑克ai机器人(微扑克)都是真的有挂(有挂教学)-哔哩哔哩1、必看攻...
安装程序教程“wpk最新黑科技... 安装程序教程“wpk最新黑科技”wpk透视辅助(WpK)起初存在有挂(发现有挂)-哔哩哔哩1、完成w...
我来向大家传授(德州ai辅助软... 我来向大家传授(德州ai辅助软件)德州ai软件购买(固有真的有挂)-哔哩哔哩需要回顾用户提供的搜索结...
我来分享!微扑克必胜技巧,微扑... 我来分享!微扑克必胜技巧,微扑克有挂么(微扑克)总是是有挂(有挂透视)-哔哩哔哩1、下载好微扑克必胜...
黑科技讲解“wepoke辅助插... 黑科技讲解“wepoke辅助插件”wepoke有辅助挂(智能ai)竟然有挂(证实有挂)-哔哩哔哩运w...
推荐攻略!微扑克有假吗,微扑克... 推荐攻略!微扑克有假吗,微扑克ai机器人(微扑克)好像真的是有挂(有挂辅助)-哔哩哔哩;1、微扑克a...
今日科普“wpk最新黑科技”w... 今日科普“wpk最新黑科技”wpkai机器人的打法(WpK)原先是有挂(有挂解密)-哔哩哔哩1、每一...
每日必看推荐(德州辅助神器软件... 德州辅助神器软件赢率提升策略‌;每日必看推荐(德州辅助神器软件)德州之星ai软件(确实真的有挂)-哔...
黑科技好友“wepoke辅助插... 黑科技好友“wepoke辅助插件”wepoke透明真的吗(透视)竟然存在有挂(有挂教程)-哔哩哔哩1...
一分钟秒懂!微扑克专用辅助器,... 一分钟秒懂!微扑克专用辅助器,微扑克ai机器人(微扑克)真是存在有挂(真是有挂)-哔哩哔哩1、操作简...