Elasticsearch中的post_filter后置过滤器技术
创始人
2025-01-15 12:36:01
0
码到三十五 : 个人主页

目录

    • 一、引言
    • 二、Post_Filter后置过滤器概述
    • 三、使用场景
    • 四、DSL使用
      • 1. 使用DSL构建包含Post_Filter的查询
      • 2. Elasticsearch的先聚合再后置过滤
    • 五、优化策略
    • 六、结语

一、引言

在Elasticsearch中,过滤文档以满足特定条件是一个常见的需求。传统的过滤器(Filter)在Elasticsearch的早期版本中扮演着重要角色,但在后续的版本中,过滤器的概念逐渐被查询(Query)中的布尔子句(Bool Clause)所取代。

然而,在某些场景下,我们可能需要在查询执行完成后对结果进行额外的过滤,这就是Post_Filter后置过滤器的作用所在。本文将详细介绍Elasticsearch中的Post_Filter后置过滤器技术,包括其工作原理、使用场景、DSL使用示例以及优化策略等内容。

二、Post_Filter后置过滤器概述

Post_Filter后置过滤器是一种在查询执行完成后对结果进行过滤的机制。与传统的过滤器不同,Post_Filter不会对查询的性能产生显著影响,因为它是在查询完成后对结果进行过滤的。这使得Post_Filter在处理大量数据或复杂查询时成为一种高效的选择。

Post_Filter的工作原理是在查询执行完毕后,对返回的文档集进行过滤。这意味着所有与查询匹配的文档都会被检索出来,然后Post_Filter会对这些文档进行额外的过滤操作,以满足特定的条件。这种机制允许我们在不牺牲查询性能的前提下,对结果进行精细化的控制。

三、使用场景

Post_Filter后置过滤器适用于以下场景:

  • 需要对查询结果进行二次过滤

在某些情况下,我们可能需要根据额外的条件对查询结果进行过滤。这些条件可能无法在查询阶段直接指定,或者它们的计算成本较高,不适合在查询阶段执行。这时,我们可以使用Post_Filter对这些条件进行过滤。

  • 需要对聚合结果进行过滤

在Elasticsearch中,聚合操作允许我们对数据进行统计和分析。然而,在某些情况下,我们可能需要对聚合结果进行过滤,以排除不满足特定条件的聚合项。Post_Filter可以在聚合完成后对结果进行过滤,实现这一需求。

在这里插入图片描述

  • 需要对高亮结果进行过滤

在全文搜索中,高亮功能允许我们将匹配的关键词以特殊的方式显示出来,以便用户快速定位到相关信息。然而,在某些情况下,我们可能需要对高亮结果进行过滤,以排除不满足特定条件的高亮项。Post_Filter可以在高亮操作完成后对结果进行过滤,实现这一需求。

四、DSL使用

1. 使用DSL构建包含Post_Filter的查询

GET /products/_search {   "query": {     "bool": {       "must": [         { "match": { "description": "smartphone" } }       ],       "filter": [         { "range": { "price": { "gte": 100, "lte": 500 } } }       ]     }   },   "post_filter": {     "term": { "brand.keyword": "Apple" }   },   "highlight": {     "fields": {       "description": {}     }   } } 

首先使用bool查询来匹配描述中包含"smartphone"的商品,并使用range过滤器来限制价格范围在100到500之间。然后,我们使用Post_Filter来进一步过滤结果,只保留品牌为"Apple"的商品。最后,我们使用高亮功能来突出显示匹配的描述字段。

注意,虽然Post_Filter是在查询执行完成后对结果进行过滤的,但它仍然可以对查询的性能产生影响。如果Post_Filter的条件非常严格,导致只有很少的文档满足条件,那么查询的总体性能可能会受到一定的影响。因此,在使用Post_Filter时,我们需要权衡其带来的便利性和潜在的性能开销。

2. Elasticsearch的先聚合再后置过滤

假设有一个名为sales的索引,其中包含了销售数据。每个文档代表一个销售记录,包含product_id、sale_date和amount等字段。现在,我们想要找出某个时间段内的销售总额,并且只关注特定品牌的销售记录。

GET /sales/_search {   "size": 0,   "aggs": {     "sales_over_time": {       "date_histogram": {         "field": "sale_date",         "calendar_interval": "month",         "format": "yyyy-MM"       },       "aggs": {         "total_sales": {           "sum": {             "field": "amount"           }         }       }     }   },   "post_filter": {     "term": {       "brand.keyword": "Apple"     }   } } 

在这个查询中:

  • 我们使用date_histogram聚合来按月份对销售数据进行分组。
  • 对于每个时间桶(month bucket),我们使用sum聚合来计算该时间段内的销售总额。
  • 使用post_filter来过滤出品牌为"Apple"的销售记录。注意,这里的过滤是在聚合完成后对结果进行过滤的,这意味着所有的销售数据都会被聚合,但只有在品牌为"Apple"的销售记录上的聚合结果才会被返回。
  • 将size设置为0,因为我们只对聚合结果感兴趣,而不需要返回具体的文档。

结果类似于以下结构:

{   "took": ...,   "timed_out": false,   "_shards": { ... },   "hits": {     "total": { ... },     "max_score": null,     "hits": []  // 注意这里不会有具体的文档,因为我们设置了size为0   },   "aggregations": {     "sales_over_time": {       "buckets": [         {           "key_as_string": "2023-01",           "key": 1672531200000,           "doc_count": 100,  // 这个数字是在过滤前的原始文档数(可能包含非Apple品牌的销售记录)           "total_sales": {             "value": 10000.0  // 这个数字是过滤后(即Apple品牌)在2023年1月的销售总额           }         },         {           "key_as_string": "2023-02",           "key": 1675113600000,           "doc_count": 120,  // 同样,这个数字是在过滤前的原始文档数           "total_sales": {             "value": 12500.0  // 过滤后在2023年2月的销售总额           }           // ... 其他月份的数据         ]       }     }   } } 

注意:

  • doc_count字段表示的是每个时间桶内的原始文档数(即在应用post_filter之前的数量)。这个数量可能包含非"Apple"品牌的销售记录。
  • total_sales.value字段表示的是在每个时间桶内,经过post_filter过滤后(即只计算"Apple"品牌的销售记录)的销售总额。

五、优化策略

为了充分发挥Post_Filter后置过滤器的优势并避免潜在的性能问题,可以采取以下优化策略:

  • 避免在Post_Filter中使用复杂的脚本或计算:复杂的脚本或计算可能会增加过滤的开销,从而影响查询的总体性能。我们应尽量使用简单的过滤条件来减少计算成本。
  • 合理选择过滤条件:在选择过滤条件时,我们应充分考虑数据的分布和查询的需求。如果某个过滤条件可以提前在查询阶段指定,并且不会显著增加查询的复杂性,那么最好将其放在查询中而不是Post_Filter中。
  • 监控和分析查询性能:使用Elasticsearch提供的监控和分析工具来定期检查查询的性能。如果发现Post_Filter对性能产生了显著影响,我们可以考虑调整过滤条件或查询结构来优化性能。
  • 利用缓存机制:虽然Post_Filter本身不会缓存结果,但我们可以利用Elasticsearch的其他缓存机制来提高性能。例如,我们可以将经常使用的查询和过滤器缓存起来,以减少重复计算的开销。

六、结语

Post_Filter后置过滤器是Elasticsearch中一种强大的工具,它允许我们在查询执行完成后对结果进行额外的过滤操作。通过合理使用Post_Filter并结合优化策略,我们可以在不牺牲查询性能的前提下实现对结果的精细控制。然而,我们也需要注意避免在Post_Filter中使用复杂的脚本或计算,并合理选择过滤条件来平衡便利性和性能开销之间的关系。


关注以下公众号获取更多深度内容,纯干货 !

相关内容

热门资讯

来一盘(来玩德州)软件透明挂(... 来一盘(来玩德州)软件透明挂(辅助挂)透明辅助挂软件(2022已更新)(哔哩哔哩)是一款可以让一直输...
一分钟快速了解博雅红河棋牌如何... 您好,博雅红河棋牌如何让牌变好这款游戏可以开挂的,确实是有挂的,需要了解加微【485275054】很...
9分钟了解(Wepoke德州局... 9分钟了解(Wepoke德州局)外挂辅助器脚本(透视)详细教程(2025已更新)(哔哩哔哩);1、超...
最新技巧(线上wpk)软件透明... 最新技巧(线上wpk)软件透明挂(透视)外挂辅助器脚本(2025已更新)(哔哩哔哩);线上wpk最新...
记者揭秘(WPK)软件透明挂(... 记者揭秘(WPK)软件透明挂(辅助挂)外挂透明挂神器(2024已更新)(哔哩哔哩);相信小伙伴都知道...
技术分享中至二人麻将有猫腻的!... 技术分享中至二人麻将有猫腻的!太坑了原来确实是有挂(2021已更新)(有挂普及);中至二人麻将有猫腻...
解密关于(Wepoke大厅房)... 解密关于(Wepoke大厅房)外挂辅助器神器(透视)详细教程(2021已更新)(哔哩哔哩)是一款可以...
【C++】用红黑树封装map、... 用红黑树封装map、set1. 红黑树1.1 模板参数的控制1.1.1 Value1.1.2 Key...
最新技巧爱来麻将到底有挂!太坑... 最新技巧爱来麻将到底有挂!太坑了原来确实是有挂(2022已更新)(有挂教程);相信小伙伴都知道这个爱...
动态内存管理<C语言> 导言        在C语言学习阶段,指针、结构体和动态内存管理,是后期...