Langchain教程 | langchain+OpenAI+PostgreSQL(PGVector) 实现全链路教程,简单易懂入门
创始人
2025-01-15 08:08:10
0

前提:

        在阅读本文前,建议要有一定的langchain基础,以及langchain中document loader和text spliter有相关的认知,不然会比较难理解文本内容。

        如果是没有任何基础的同学建议看下这个专栏:人工智能 | 大模型 | 实战与教程

        本文主要展示如何结合langchain使用Postgres矢量数据库,其他相关的基础内容,可以看专栏了解,都已经拆分好了,一步步食用即可,推荐线路:langchain基础、document loader加载器、text spliter文档拆分器等按顺序学习。

PGVector是一个开源向量相似性搜索Postgres

它支持:- 精确和近似最近邻搜索- L2距离,内积和余弦距离 

基础库准备:

# Pip install necessary package %pip install --upgrade --quiet  pgvector %pip install --upgrade --quiet  psycopg2-binary %pip install --upgrade --quiet  tiktoken %pip install --upgrade --quiet  openai
from langchain.docstore.document import Document from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores.pgvector import PGVector from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter

我们想使用OpenAIEmbeddings所以我们必须获得OpenAI API密钥。

提示:因为国内政策原因,建议采购代理key,至于哪家好用,这里就不推荐了。

em.py 设置环境变量

import getpass import os  os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

 加载环境变量,openai库会自动读取该参数OPEN_API_KEY

## Loading Environment Variables from dotenv import load_dotenv  load_dotenv()

 这里使用的文本内容是: 人民财评:花香阵阵游人醉,“春日经济”热力足

将链接中的文本内容保存到 :state_of_the_union.txt

拆分中文文档需要用到递归型的字符拆分器 RecursiveCharacterTextSplitter,同时要使用中文分隔符:句号。逗号,顿号、感叹号!等。

loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents)  embeddings = OpenAIEmbeddings()

连接Postgre矢量存储库

# PGVector needs the connection string to the database. CONNECTION_STRING = "postgresql+psycopg2://harrisonchase@localhost:5432/test3"  # # Alternatively, you can create it from environment variables. # import os  

类还内置了一个更直观的方法:connection_string_from_db_params()

CONNECTION_STRING = PGVector.connection_string_from_db_params(     driver=os.environ.get("PGVECTOR_DRIVER", "psycopg2"),     host=os.environ.get("PGVECTOR_HOST", "localhost"),     port=int(os.environ.get("PGVECTOR_PORT", "5432")),     database=os.environ.get("PGVECTOR_DATABASE", "postgres"),     user=os.environ.get("PGVECTOR_USER", "postgres"),     password=os.environ.get("PGVECTOR_PASSWORD", "postgres"), )

使用欧氏距离进行相似性搜索(默认)

# The PGVector Module will try to create a table with the name of the collection. # So, make sure that the collection name is unique and the user has the permission to create a table.  COLLECTION_NAME = "state_of_the_union_test"  db = PGVector.from_documents(     embedding=embeddings,     documents=docs,     collection_name=COLLECTION_NAME,     connection_string=CONNECTION_STRING, )
query = "今年长三角铁路春游运输共历时多少天?" docs_with_score = db.similarity_search_with_score(query)
for doc, score in docs_with_score:     print("-" * 80)     print("Score: ", score)     print(doc.page_content)     print("-" * 80)

输出结果:

最大边际相关性搜索

最大边际相关性优化了查询的相似性和所选文档的多样性。 

docs_with_score = db.max_marginal_relevance_search_with_score(query)
for doc, score in docs_with_score:     print("-" * 80)     print("Score: ", score)     print(doc.page_content)     print("-" * 80)

打印结果:

使用vectorstore 

        上面,我们从头开始创建了一个vectorstore。但是,我们经常希望使用现有的vectorstore。为了做到这一点,我们可以直接初始化它。

store = PGVector(     collection_name=COLLECTION_NAME,     connection_string=CONNECTION_STRING,     embedding_function=embeddings, )

添加文档

我们可以向现有的vectorstore添加文档。

store.add_documents([Document(page_content="今年春游创收客观,实际增长30%。")])
docs_with_score = db.similarity_search_with_score("春游增长多少")
print(docs_with_score[0])
print(docs_with_score[1])

覆盖向量存储

        如果您有一个现有的集合,您可以通过执行以下操作来覆盖它from_documents和设置pre_delete_collection=真

db = PGVector.from_documents(     documents=docs,     embedding=embeddings,     collection_name=COLLECTION_NAME,     connection_string=CONNECTION_STRING,     pre_delete_collection=True, )

将VectorStore用作检索器

retriever = store.as_retriever()

与OpenAI结合使用完整代码

里面包含了详细的步骤和注释,直接复制就可运行。

import os from langchain_community.document_loaders import TextLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_community.vectorstores.pgvector import PGVector from langchain_text_splitters import RecursiveCharacterTextSplitter from dotenv import load_dotenv  # 加载环境变量或者加载.env文件 load_dotenv() # 导入文本文件 loader = TextLoader("./demo_static/splitters_test.txt") # 生成文档加载器 documents = loader.load() # 文档拆分,每块最大限制20,覆盖量10 text_splitter = RecursiveCharacterTextSplitter(     separators=["\n\n", "\n", "。", "?", ";"],     chunk_size=100,     chunk_overlap=20, ) # 开始拆分文档 docs = text_splitter.split_documents(documents) # print(len(docs)) # print(docs)  # 初始化嵌入式OpenAI大语言模型,手动指定key和代理地址 embeddings = OpenAIEmbeddings(openai_api_key=os.getenv("OEPNAPI_API_KEY"),                               openai_api_base=os.getenv("OPENAI_API_BASE")) # 连接矢量存储库,链接换成自己专属的* CONNECTION_STRING = "postgresql+psycopg2://postgres:password@localhost:5432/postgres" # 矢量存储名 COLLECTION_NAME = "state_of_the_union_test" # 建立索引库 vector = PGVector.from_documents(     embedding=embeddings,     documents=docs,     collection_name=COLLECTION_NAME,     connection_string=CONNECTION_STRING,     use_jsonb=True,     pre_delete_collection=True, ) # 生成检索器 retriever = vector.as_retriever() # 一个对话模板,内含2个变量context和question template = """Answer the question based only on the following context: {context} Question: {question} """ # 基于模板生成提示 prompt = ChatPromptTemplate.from_template(template) # 基于对话openai生成模型 model = ChatOpenAI(openai_api_key=os.getenv("OEPNAPI_API_KEY"),                    openai_api_base=os.getenv("OPENAI_API_BASE")) # 生成输出解析器 output_parser = StrOutputParser() # 将检索索引器和输入内容(问题)生成检索 setup_and_retrieval = RunnableParallel(     {"context": retriever, "question": RunnablePassthrough()} ) # 建立增强链 chain = setup_and_retrieval | prompt | model | output_parser # 问题 question = "今年长三角铁路春游运输共历时多少天?" # 发起请求 res = chain.invoke(question) # 打印结果 print(res) 

打印结果:

    32天

 创作不易,来个三连(点赞、收藏、关注),同学们的满意是我(H-大叔)的动力。

 代码运行有问题或其他建议,请在留言区评论,看到就会回复,不用私聊。

专栏人工智能 | 大模型 | 实战与教程里面还有其他人工智能|大数据方面的文章,可继续食用,持续更新。

相关内容

热门资讯

辅助盘点!wepoke ai代... 【福星临门,好运相随】;辅助盘点!wepoke ai代打,德州云扑克软件透明挂,有挂软件(2023已...
论文翻译:Large Lang... https://arxiv.org/abs/2403.18105目录教育领域的大型语言模型ÿ...
虚幻引擎ue5游戏运行界面白茫... 根剧下图顺序即可调节游戏运行界面光照问题:在大纲里找到post,然后选中...
sql server日期时间格...         一些日期的处理方式,欢迎批评指正,部分内容查询gpt得知...
MySQL中replace i... 文章目录一、replace into原理二、`replace into`的三种形式三...
一分钟了解欢乐龙城3能赢!太难... 一分钟了解欢乐龙城3能赢!太难了其实确实是真的有挂(2021已更新)(有挂消息)是一款可以让一直输的...
虚幻引擎ue5如何调节物体锚点 当发现锚点不在物体上时,如何调节瞄点在物体上。步骤1:按住鼠标中键拖动锚...
2次辅助!微扑克到底有辅助器,... 2次辅助!微扑克到底有辅助器,菠萝德州软件透明挂,有挂力荐(2023已更新)(哔哩哔哩);超受欢迎的...
Hive-分区与分桶详解(超详... 文章目录前言一、Hive分区1. 什么是分区2. 分区的优势3. 如何创建分区表4. 如何插入分区数...
一篇文章搞懂MySQL的分库分... 导航:【Java笔记+踩坑汇总】Java基础+JavaWeb+...