Transformer——多头注意力机制(Pytorch)
创始人
2025-01-11 08:34:26
0

1. 原理图

2. 代码

import torch import torch.nn as nn   class Multi_Head_Self_Attention(nn.Module):     def __init__(self, embed_size, heads):         super(Multi_Head_Self_Attention, self).__init__()         self.embed_size = embed_size         self.heads = heads         self.head_dim = embed_size // heads          self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)         self.keys = nn.Linear(self.embed_size, self.embed_size, bias=False)         self.values = nn.Linear(self.embed_size, self.embed_size, bias=False)         self.fc_out = nn.Linear(self.embed_size, self.embed_size, bias=False)      def forward(self,queries, keys, values, mask):         N = queries.shape[0]  # batch_size         query_len = queries.shape[1]  # sequence_length         key_len = keys.shape[1]  # sequence_length          value_len = values.shape[1]  # sequence_length          queries = self.queries(queries)         keys = self.keys(keys)         values = self.values(values)          # Split the embedding into self.heads pieces         # batch_size, sequence_length, embed_size(512) -->          # batch_size, sequence_length, heads(8), head_dim(64)         queries = queries.reshape(N, query_len, self.heads, self.head_dim)         keys = keys.reshape(N, key_len, self.heads, self.head_dim)         values = values.reshape(N, value_len, self.heads, self.head_dim)          # batch_size, sequence_length, heads(8), head_dim(64) -->          # batch_size, heads(8), sequence_length, head_dim(64)         queries = queries.transpose(1, 2)         keys = keys.transpose(1, 2)         values = values.transpose(1, 2)          # Scaled dot-product attention         score = torch.matmul(queries, keys.transpose(-2, -1)) / (self.head_dim ** (1/2))          if mask is not None:             score = score.masked_fill(mask == 0, float("-inf"))         # batch_size, heads(8), sequence_length, sequence_length         attention = torch.softmax(score, dim=-1)          out = torch.matmul(attention, values)         # batch_size, heads(8), sequence_length, head_dim(64) -->         # batch_size, sequence_length, heads(8), head_dim(64) -->         # batch_size, sequence_length, embed_size(512)         # 为了方便送入后面的网络         out = out.transpose(1, 2).contiguous().reshape(N, query_len, self.embed_size)         out = self.fc_out(out)          return out       batch_size = 64 sequence_length = 10 embed_size = 512 heads = 8 mask = None  Q = torch.randn(batch_size, sequence_length, embed_size)   K = torch.randn(batch_size, sequence_length, embed_size)   V = torch.randn(batch_size, sequence_length, embed_size)    model = Multi_Head_Self_Attention(embed_size, heads) output = model(Q, K, V, mask) print(output.shape)

 

相关内容

热门资讯

一分钟内幕!科乐吉林麻将系统发... 一分钟内幕!科乐吉林麻将系统发牌规律,福建大玩家确实真的是有挂,技巧教程(有挂ai代打);所有人都在...
一分钟揭秘!微扑克辅助软件(透... 一分钟揭秘!微扑克辅助软件(透视辅助)确实是有挂(2024已更新)(哔哩哔哩);1、用户打开应用后不...
五分钟发现!广东雀神麻雀怎么赢... 五分钟发现!广东雀神麻雀怎么赢,朋朋棋牌都是是真的有挂,高科技教程(有挂方法)1、广东雀神麻雀怎么赢...
每日必看!人皇大厅吗(透明挂)... 每日必看!人皇大厅吗(透明挂)好像存在有挂(2026已更新)(哔哩哔哩);人皇大厅吗辅助器中分为三种...
重大科普!新华棋牌有挂吗(透视... 重大科普!新华棋牌有挂吗(透视)一直是有挂(2021已更新)(哔哩哔哩)1、完成新华棋牌有挂吗的残局...
二分钟内幕!微信小程序途游辅助... 二分钟内幕!微信小程序途游辅助器,掌中乐游戏中心其实存在有挂,微扑克教程(有挂规律)二分钟内幕!微信...
科技揭秘!jj斗地主系统控牌吗... 科技揭秘!jj斗地主系统控牌吗(透视)本来真的是有挂(2025已更新)(哔哩哔哩)1、科技揭秘!jj...
1分钟普及!哈灵麻将攻略小,微... 1分钟普及!哈灵麻将攻略小,微信小程序十三张好像存在有挂,规律教程(有挂技巧)哈灵麻将攻略小是一种具...
9分钟教程!科乐麻将有挂吗,传... 9分钟教程!科乐麻将有挂吗,传送屋高防版辅助(总是存在有挂)1、完成传送屋高防版辅助透视辅助安装,帮...
每日必看教程!兴动游戏辅助器下... 每日必看教程!兴动游戏辅助器下载(辅助)真是真的有挂(2025已更新)(哔哩哔哩)1、打开软件启动之...