应用实践之基于MobileNetv2的垃圾分类
创始人
2025-01-11 07:05:19
0

MobileNetv2模型原理介绍

前言

MobileNet是2017年由Google团队提出的轻量级CNN网络,专注于移动端、嵌入式或IoT设备。它使用深度可分离卷积的思想来减小模型参数与运算量,同时引入宽度系数和分辨率系数以满足不同应用场景的需求。MobileNetV2则采用倒残差结构和Linear Bottlenecks来优化模型,提高准确率并缩小模型尺寸。

操作步骤

数据加载

import math import numpy as np import os import random  from matplotlib import pyplot as plt from easydict import EasyDict from PIL import Image import numpy as np import mindspore.nn as nn from mindspore import ops as P from mindspore.ops import add from mindspore import Tensor import mindspore.common.dtype as mstype import mindspore.dataset as de import mindspore.dataset.vision as C import mindspore.dataset.transforms as C2 import mindspore as ms from mindspore import set_context, nn, Tensor, load_checkpoint, save_checkpoint, export from mindspore.train import Model from mindspore.train import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig  os.environ['GLOG_v'] = '3' # Log level includes 3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG). os.environ['GLOG_logtostderr'] = '0' # 0:输出到文件,1:输出到屏幕 os.environ['GLOG_log_dir'] = '../../log' # 日志目录 os.environ['GLOG_stderrthreshold'] = '2' # 输出到目录也输出到屏幕:3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG). set_context(mode=ms.GRAPH_MODE, device_target="CPU", device_id=0) # 设置采用图模式执行,设备为Ascend#
# 垃圾分类数据集标签,以及用于标签映射的字典。 garbage_classes = {     '干垃圾': ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服'],     '可回收物': ['报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张'],     '湿垃圾': ['菜叶', '橙皮', '蛋壳', '香蕉皮'],     '有害垃圾': ['电池', '药片胶囊', '荧光灯', '油漆桶'] }  class_cn = ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服',             '报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张',             '菜叶', '橙皮', '蛋壳', '香蕉皮',             '电池', '药片胶囊', '荧光灯', '油漆桶'] class_en = ['Seashell', 'Lighter','Old Mirror', 'Broom','Ceramic Bowl', 'Toothbrush','Disposable Chopsticks','Dirty Cloth',             'Newspaper', 'Glassware', 'Basketball', 'Plastic Bottle', 'Cardboard','Glass Bottle', 'Metalware', 'Hats', 'Cans', 'Paper',             'Vegetable Leaf','Orange Peel', 'Eggshell','Banana Peel',             'Battery', 'Tablet capsules','Fluorescent lamp', 'Paint bucket']  index_en = {'Seashell': 0, 'Lighter': 1, 'Old Mirror': 2, 'Broom': 3, 'Ceramic Bowl': 4, 'Toothbrush': 5, 'Disposable Chopsticks': 6, 'Dirty Cloth': 7,             'Newspaper': 8, 'Glassware': 9, 'Basketball': 10, 'Plastic Bottle': 11, 'Cardboard': 12, 'Glass Bottle': 13, 'Metalware': 14, 'Hats': 15, 'Cans': 16, 'Paper': 17,             'Vegetable Leaf': 18, 'Orange Peel': 19, 'Eggshell': 20, 'Banana Peel': 21,             'Battery': 22, 'Tablet capsules': 23, 'Fluorescent lamp': 24, 'Paint bucket': 25}  # 训练超参 config = EasyDict({     "num_classes": 26,     "image_height": 224,     "image_width": 224,     #"data_split": [0.9, 0.1],     "backbone_out_channels":1280,     "batch_size": 16,     "eval_batch_size": 8,     "epochs": 10,     "lr_max": 0.05,     "momentum": 0.9,     "weight_decay": 1e-4,     "save_ckpt_epochs": 1,     "dataset_path": "./data_en",     "class_index": index_en,     "pretrained_ckpt": "./mobilenetV2-200_1067.ckpt" # mobilenetV2-200_1067.ckpt  })

对垃圾分类数据集进行数据预处理,包括读取数据集、归一化、修改图像频道等操作。对训练集进行RandomCropDecodeResize、RandomHorizontalFlip、RandomColorAdjust、shuffle等操作,对测试集进行Decode、Resize、CenterCrop等操作。

MobileNetV2模型的训练与测试

训练策略

一般情况下,模型训练时采用静态学习率,如0.01。随着训练步数的增加,模型逐渐趋于收敛,对权重参数的更新幅度应该逐渐降低,以减小模型训练后期的抖动。所以,模型训练时可以采用动态下降的学习率,常见的学习率下降策略有:

__all__ = ['MobileNetV2', 'MobileNetV2Backbone', 'MobileNetV2Head', 'mobilenet_v2']  def _make_divisible(v, divisor, min_value=None):     if min_value is None:         min_value = divisor     new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)     if new_v < 0.9 * v:         new_v += divisor     return new_v  class GlobalAvgPooling(nn.Cell):     """     Global avg pooling definition.      Args:      Returns:         Tensor, output tensor.      Examples:         >>> GlobalAvgPooling()     """      def __init__(self):         super(GlobalAvgPooling, self).__init__()      def construct(self, x):         x = P.mean(x, (2, 3))         return x  class ConvBNReLU(nn.Cell):     """     Convolution/Depthwise fused with Batchnorm and ReLU block definition.      Args:         in_planes (int): Input channel.         out_planes (int): Output channel.         kernel_size (int): Input kernel size.         stride (int): Stride size for the first convolutional layer. Default: 1.         groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.      Returns:         Tensor, output tensor.      Examples:         >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)     """      def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):         super(ConvBNReLU, self).__init__()         padding = (kernel_size - 1) // 2         in_channels = in_planes         out_channels = out_planes         if groups == 1:             conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad', padding=padding)         else:             out_channels = in_planes             conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad',                              padding=padding, group=in_channels)          layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]         self.features = nn.SequentialCell(layers)      def construct(self, x):         output = self.features(x)         return output  class InvertedResidual(nn.Cell):     """     Mobilenetv2 residual block definition.      Args:         inp (int): Input channel.         oup (int): Output channel.         stride (int): Stride size for the first convolutional layer. Default: 1.         expand_ratio (int): expand ration of input channel      Returns:         Tensor, output tensor.      Examples:         >>> ResidualBlock(3, 256, 1, 1)     """      def __init__(self, inp, oup, stride, expand_ratio):         super(InvertedResidual, self).__init__()         assert stride in [1, 2]          hidden_dim = int(round(inp * expand_ratio))         self.use_res_connect = stride == 1 and inp == oup          layers = []         if expand_ratio != 1:             layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))         layers.extend([             ConvBNReLU(hidden_dim, hidden_dim,                        stride=stride, groups=hidden_dim),             nn.Conv2d(hidden_dim, oup, kernel_size=1,                       stride=1, has_bias=False),             nn.BatchNorm2d(oup),         ])         self.conv = nn.SequentialCell(layers)         self.cast = P.Cast()      def construct(self, x):         identity = x         x = self.conv(x)         if self.use_res_connect:             return P.add(identity, x)         return x  class MobileNetV2Backbone(nn.Cell):     """     MobileNetV2 architecture.      Args:         class_num (int): number of classes.         width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.         has_dropout (bool): Is dropout used. Default is false         inverted_residual_setting (list): Inverted residual settings. Default is None         round_nearest (list): Channel round to . Default is 8     Returns:         Tensor, output tensor.      Examples:         >>> MobileNetV2(num_classes=1000)     """      def __init__(self, width_mult=1., inverted_residual_setting=None, round_nearest=8,                  input_channel=32, last_channel=1280):         super(MobileNetV2Backbone, self).__init__()         block = InvertedResidual         # setting of inverted residual blocks         self.cfgs = inverted_residual_setting         if inverted_residual_setting is None:             self.cfgs = [                 # t, c, n, s                 [1, 16, 1, 1],                 [6, 24, 2, 2],                 [6, 32, 3, 2],                 [6, 64, 4, 2],                 [6, 96, 3, 1],                 [6, 160, 3, 2],                 [6, 320, 1, 1],             ]          # building first layer         input_channel = _make_divisible(input_channel * width_mult, round_nearest)         self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)         features = [ConvBNReLU(3, input_channel, stride=2)]         # building inverted residual blocks         for t, c, n, s in self.cfgs:             output_channel = _make_divisible(c * width_mult, round_nearest)             for i in range(n):                 stride = s if i == 0 else 1                 features.append(block(input_channel, output_channel, stride, expand_ratio=t))                 input_channel = output_channel         features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))         self.features = nn.SequentialCell(features)         self._initialize_weights()      def construct(self, x):         x = self.features(x)         return x      def _initialize_weights(self):         """         Initialize weights.          Args:          Returns:             None.          Examples:             >>> _initialize_weights()         """         self.init_parameters_data()         for _, m in self.cells_and_names():             if isinstance(m, nn.Conv2d):                 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels                 m.weight.set_data(Tensor(np.random.normal(0, np.sqrt(2. / n),                                                           m.weight.data.shape).astype("float32")))                 if m.bias is not None:                     m.bias.set_data(                         Tensor(np.zeros(m.bias.data.shape, dtype="float32")))             elif isinstance(m, nn.BatchNorm2d):                 m.gamma.set_data(                     Tensor(np.ones(m.gamma.data.shape, dtype="float32")))                 m.beta.set_data(                     Tensor(np.zeros(m.beta.data.shape, dtype="float32")))      @property     def get_features(self):         return self.features  class MobileNetV2Head(nn.Cell):     """     MobileNetV2 architecture.      Args:         class_num (int): Number of classes. Default is 1000.         has_dropout (bool): Is dropout used. Default is false     Returns:         Tensor, output tensor.      Examples:         >>> MobileNetV2(num_classes=1000)     """      def __init__(self, input_channel=1280, num_classes=1000, has_dropout=False, activation="None"):         super(MobileNetV2Head, self).__init__()         # mobilenet head         head = ([GlobalAvgPooling(), nn.Dense(input_channel, num_classes, has_bias=True)] if not has_dropout else                 [GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(input_channel, num_classes, has_bias=True)])         self.head = nn.SequentialCell(head)         self.need_activation = True         if activation == "Sigmoid":             self.activation = nn.Sigmoid()         elif activation == "Softmax":             self.activation = nn.Softmax()         else:             self.need_activation = False         self._initialize_weights()      def construct(self, x):         x = self.head(x)         if self.need_activation:             x = self.activation(x)         return x      def _initialize_weights(self):         """         Initialize weights.          Args:          Returns:             None.          Examples:             >>> _initialize_weights()         """         self.init_parameters_data()         for _, m in self.cells_and_names():             if isinstance(m, nn.Dense):                 m.weight.set_data(Tensor(np.random.normal(                     0, 0.01, m.weight.data.shape).astype("float32")))                 if m.bias is not None:                     m.bias.set_data(                         Tensor(np.zeros(m.bias.data.shape, dtype="float32")))     @property     def get_head(self):         return self.head  class MobileNetV2(nn.Cell):     """     MobileNetV2 architecture.      Args:         class_num (int): number of classes.         width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.         has_dropout (bool): Is dropout used. Default is false         inverted_residual_setting (list): Inverted residual settings. Default is None         round_nearest (list): Channel round to . Default is 8     Returns:         Tensor, output tensor.      Examples:         >>> MobileNetV2(backbone, head)     """      def __init__(self, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, \         round_nearest=8, input_channel=32, last_channel=1280):         super(MobileNetV2, self).__init__()         self.backbone = MobileNetV2Backbone(width_mult=width_mult, \             inverted_residual_setting=inverted_residual_setting, \             round_nearest=round_nearest, input_channel=input_channel, last_channel=last_channel).get_features         self.head = MobileNetV2Head(input_channel=self.backbone.out_channel, num_classes=num_classes, \             has_dropout=has_dropout).get_head      def construct(self, x):         x = self.backbone(x)         x = self.head(x)         return x  class MobileNetV2Combine(nn.Cell):     """     MobileNetV2Combine architecture.      Args:         backbone (Cell): the features extract layers.         head (Cell):  the fully connected layers.     Returns:         Tensor, output tensor.      Examples:         >>> MobileNetV2(num_classes=1000)     """      def __init__(self, backbone, head):         super(MobileNetV2Combine, self).__init__(auto_prefix=False)         self.backbone = backbone         self.head = head      def construct(self, x):         x = self.backbone(x)         x = self.head(x)         return x  def mobilenet_v2(backbone, head):     return MobileNetV2Combine(backbone, head)

在进行深度学习模型训练前的准备工作,包括定义训练函数、读取数据、实例化模型、定义优化器和损失函数。其中详细介绍了损失函数和优化器的概念,以及训练过程中损失函数的作用和优化器的使用。同时还说明了在训练MobileNetV2模型时对参数的固定和损失函数的选择,以及训练过程中损失值和精度的变化情况。

相关内容

热门资讯

5分钟辅助(鄱阳翻精辅助软件)... 5分钟辅助(鄱阳翻精辅助软件)好像真的有挂(详细辅助可靠教程);1、起透看视 鄱阳翻精辅助软件透明视...
科技介绍“开心十三张哈局辅助”... 科技介绍“开心十三张哈局辅助”其实存在有挂(辅助挂)详细辅助力荐教程辅助器中分为三种模型:软件透明挂...
透视ai代打!南通长牌辅助器插... 您好,南通长牌辅助器插件这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家...
2分钟辅助!广西老友玩友破解(... 您好,广西老友玩友破解这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家在...
五分钟辅助(欢聚水鱼脚本)真是... 五分钟辅助(欢聚水鱼脚本)真是真的是有挂(详细辅助高科技教程)1、进入游戏-大厅左侧-新手福利-激活...
免费测试版“荔枝辅助器免费”总... 免费测试版“荔枝辅助器免费”总是真的是有挂(辅助挂)详细辅助透明挂教程1)辅助挂:进一步探索辅助透视...
透视讲解!优乐扑克辅助器,新二... 透视讲解!优乐扑克辅助器,新二号辅助软件多少钱,技巧教程(有挂神器)科技教程也叫必备教程,这是一款功...
第六分钟辅助!微乐a3纸牌有脚... 第六分钟辅助!微乐a3纸牌有脚本(辅助挂)原本存在有挂(详细辅助力荐教程)是一款可以让一直输的玩家,...
第十分钟辅助(小闲川南怎么辅助... 第十分钟辅助(小闲川南怎么辅助)竟然有挂(详细辅助可靠教程)1、很好的工具软件,可以解锁游戏的小闲川...
透视工具!小程序牵手跑得辅助,... 透视工具!小程序牵手跑得辅助,新世界辅助器免费下载,第三方教程(有挂技巧);1分钟了解详细教程(微信...