YOLOv8白皮书-第Y8周:yolov8.yaml文件解读
创始人
2025-01-10 16:05:28
0

本文为365天深度学习训练营中的学习记录博客
原作者:K同学啊|接辅导、项目定制

请根据YOLOv8n、YOLOv8s模型的结构输出,手写出YOLOv8l的模型输出

文件位置:./ultralytics/cfg/models/v8/yolov8.yaml

一、参数配置

# Parameters nc: 80 # number of classes scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'   # [depth, width, max_channels]   n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs   s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs   m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs   l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs   x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs  

Parameters:

  • nc:80 是类别数量,即模型可以识别的物体类别数。
  • scales:包含了不同模型配置的尺度参数,用于调整模型的规模,通过尺度参数可以实现不同复杂度的模型设计。YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l、YOLOv8x五种模型的区别在于depth、width、max_channels这三个参数的不同。
    • depth: 深度,控制子模块的数量, = int(number*depth)
    • width: 宽度,控制卷积核的数量, = int(number*width)
    • max_channels: 最大通道数

五种模型性能的详细参数如下所示:
在这里插入图片描述

二、模型整体结构
YOLOv5模型:
在这里插入图片描述

YOLO-v8整体模型结构:
在这里插入图片描述

1. Backbone模块

# YOLOv8.0n backbone backbone:   # [from, repeats, module, args]   - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2   - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4   - [-1, 3, C2f, [128, True]]   - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8   - [-1, 6, C2f, [256, True]]   - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16   - [-1, 6, C2f, [512, True]]   - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32   - [-1, 3, C2f, [1024, True]]   - [-1, 1, SPPF, [1024, 5]] # 9  

这是YOLOv8的backbone,每一个模块算一行,每行由四个参数构成。分别是:

  • from:表示当前模块的输入来自那一层的输出,-1表示来自上一层的输出,层编号由0开始计数。

  • repeats:表示当前模块的理论重复次数,实际的重复次数还要由上面的参数depth_multiple共同决定,该参数影响整体网络模型的深度。

  • model:模块类名,通过这个类名在common.py中寻找相应的类,进行模块化的搭建网络。

  • args:是一个list,模块搭建所需参数,channel,kernel_size,stride,padding,bias等。

    这个模块是YOLOv8的主干网络(backbone),用于提取输入图像的特征以便后续的目标检测任务。

YOLOv8的主干网络包括卷积层(Conv)、深度可分离卷积层(C2f)以及空间金字塔池化层(SPPF)等卷积部分。它们在不同层数级上增强了网络的表示能力和视野范围,可以更好地适应各种尺寸的输入图像。

网络的输入为一幅图像,输出为多个不同层数级的特征图(feature maps),将输出的特征图传递给头部(head)以产生物体检测的结果。

2. head模块

# YOLOv8.0n head head:   - [-1, 1, nn.Upsample, [None, 2, "nearest"]]   - [[-1, 6], 1, Concat, [1]] # cat backbone P4   - [-1, 3, C2f, [512]] # 12    - [-1, 1, nn.Upsample, [None, 2, "nearest"]]   - [[-1, 4], 1, Concat, [1]] # cat backbone P3   - [-1, 3, C2f, [256]] # 15 (P3/8-small)    - [-1, 1, Conv, [256, 3, 2]]   - [[-1, 12], 1, Concat, [1]] # cat head P4   - [-1, 3, C2f, [512]] # 18 (P4/16-medium)    - [-1, 1, Conv, [512, 3, 2]]   - [[-1, 9], 1, Concat, [1]] # cat head P5   - [-1, 3, C2f, [1024]] # 21 (P5/32-large)    - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)  

这是YOLOv8s的head,数据格式和backbone一样。

3. 模型结构输出

在这里插入图片描述
cmd命令行输入:

yolo task=detect mode=train model=yolov8n.yaml data=mydata.yaml epochs=100 batch=4 

yolov8n.yaml可以换成其他模型的yaml,如yolov8s.yaml、yolov8l.yaml、yolov8m.yaml、yolov8x.yaml
(1)yolov8n.yaml模型:

                   from  n    params  module                                       arguments   0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]   1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]   2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]   3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]   4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]   5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]   6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]   7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]   8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]   9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]  10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']  11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]  12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]  13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']  14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]  15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]  16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]  17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]  18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]  19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]  20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]  21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]  22        [15, 18, 21]  1    752092  ultralytics.nn.modules.head.Detect           [4, [64, 128, 256]] YOLOv8n summary: 225 layers, 3,011,628 parameters, 3,011,612 gradients, 8.2 GFLOPs 

(2)yolov8s.yaml模型:

                   from  n    params  module                                       arguments   0                  -1  1       928  ultralytics.nn.modules.conv.Conv             [3, 32, 3, 2]   1                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]   2                  -1  1     29056  ultralytics.nn.modules.block.C2f             [64, 64, 1, True]   3                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]   4                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]   5                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]   6                  -1  2    788480  ultralytics.nn.modules.block.C2f             [256, 256, 2, True]   7                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]   8                  -1  1   1838080  ultralytics.nn.modules.block.C2f             [512, 512, 1, True]   9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]  10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']  11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]  12                  -1  1    591360  ultralytics.nn.modules.block.C2f             [768, 256, 1]  13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']  14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]  15                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]  16                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]  17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]  18                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]  19                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]  20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]  21                  -1  1   1969152  ultralytics.nn.modules.block.C2f             [768, 512, 1]  22        [15, 18, 21]  1   2117596  ultralytics.nn.modules.head.Detect           [4, [128, 256, 512]] YOLOv8s summary: 225 layers, 11,137,148 parameters, 11,137,132 gradients, 28.7 GFLOPs 

(3)yolov8l.yaml模型:

                   from  n    params  module                                       arguments   0                  -1  1      1856  ultralytics.nn.modules.conv.Conv             [3, 64, 3, 2]   1                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]   2                  -1  3    279808  ultralytics.nn.modules.block.C2f             [128, 128, 3, True]   3                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]   4                  -1  6   2101248  ultralytics.nn.modules.block.C2f             [256, 256, 6, True]   5                  -1  1   1180672  ultralytics.nn.modules.conv.Conv             [256, 512, 3, 2]   6                  -1  6   8396800  ultralytics.nn.modules.block.C2f             [512, 512, 6, True]   7                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]   8                  -1  3   4461568  ultralytics.nn.modules.block.C2f             [512, 512, 3, True]   9                  -1  1    656896  ultralytics.nn.modules.block.SPPF            [512, 512, 5]  10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']  11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]  12                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]  13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']  14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]  15                  -1  3   1247744  ultralytics.nn.modules.block.C2f             [768, 256, 3]  16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]  17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]  18                  -1  3   4592640  ultralytics.nn.modules.block.C2f             [768, 512, 3]  19                  -1  1   2360320  ultralytics.nn.modules.conv.Conv             [512, 512, 3, 2]  20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]  21                  -1  3   4723712  ultralytics.nn.modules.block.C2f             [1024, 512, 3]  22        [15, 18, 21]  1   5585884  ultralytics.nn.modules.head.Detect           [4, [256, 512, 512]] YOLOv8l summary: 365 layers, 43,632,924 parameters, 43,632,908 gradients, 165.4 GFLOPs 

三、总结
了解了YOLOv8的各种模型结构,了解了YOLOv8各种模型的参数配置。

相关内容

热门资讯

重大科普!乐胡麻将专用神器(辅... 重大科普!乐胡麻将专用神器(辅助挂)外挂辅助APP(2024已更新)(百度);1、乐胡麻将专用神器a...
程序员教你!贰柒拾辅助神器软件... 程序员教你!贰柒拾辅助神器软件,微信雀神广东麻雀小程序辅助免费,专业教程(有挂揭秘)1.贰柒拾辅助神...
分享个大家!情怀手机麻将挂神器... 分享个大家!情怀手机麻将挂神器,三哥玩摆头注好像真的有挂,攻略方法(有挂技巧)该软件可以轻松地帮助玩...
黑科技辅助挂!相约麻将十三水输... 黑科技辅助挂!相约麻将十三水输赢的规则,永和备厅辅助,微信雀神广东麻雀小程序辅助免费;1、玩家可以在...
每日必看!兴动棋牌有挂吗谁用了... 每日必看!兴动棋牌有挂吗谁用了(辅助挂)外挂透视辅助脚本(2025已更新)(今日头条)1、完成兴动棋...
一分钟了解!!湖北手机麻将助赢... 一分钟了解!!湖北手机麻将助赢神器,大同手机麻将就是真的有挂,AI教程(有挂揭秘)小薇(透视辅助)致...
一分钟了解!网易棋牌有挂吗软件... 一分钟了解!网易棋牌有挂吗软件,全民雀神透视辅助,可靠技巧(有挂介绍)1、网易棋牌有挂吗软件ai机器...
黑科技辅助挂!微乐宁夏划水麻将... 黑科技辅助挂!微乐宁夏划水麻将怎么让系统发好牌,中至吉安王炸辅助器,七彩全民雀神苹果手机1、微乐宁夏...
详细说明!决战游戏辅助器下载(... 详细说明!决战游戏辅助器下载(透视)外挂透明挂辅助机制(2022已更新)(微博热搜);1、决战游戏辅...
热点推荐!!琼雀海南麻将有挂吗... 热点推荐!!琼雀海南麻将有挂吗,天天开心王国十三水的确是有挂的,解密教程(有挂解密);1、让任何用户...