SpringBoot集成Sharding-JDBC-5.3.0实现按月动态建表分表
创始人
2025-01-08 21:36:32
0

 Sharding-JDBC系列

1、Sharding-JDBC分库分表的基本使用

2、Sharding-JDBC分库分表之SpringBoot分片策略

3、Sharding-JDBC分库分表之SpringBoot主从配置

4、SpringBoot集成Sharding-JDBC-5.3.0分库分表

5、SpringBoot集成Sharding-JDBC-5.3.0实现按月动态建表分表

前言

随着业务量的递增,项目产生海量的数据,在某些场景中,需要将数据按月存储。本篇基于Sharding-JDBC 5.3.0,分享一下按月自动建表以及分表的实现。

准备工作

创建一个数据库,创建一张表,表名为tb_order。该表作为基准表。

引入依赖

               org.springframework.boot         spring-boot-starter-parent         2.7.1                    4.0.0      Sharding-JDBC-demo2                            org.springframework.boot             spring-boot-starter-web                               com.baomidou             mybatis-plus-boot-starter             3.4.1                               org.apache.shardingsphere             shardingsphere-jdbc-core             5.3.0                               org.yaml             snakeyaml             1.33                               mysql             mysql-connector-java             8.0.28                               com.alibaba             druid             1.2.6                               org.projectlombok             lombok             1.18.22             compile                         

1)引入shardingsphere-jdbc-core 5.3.0 的版本;

2)项目中不要引入spring-boot-devtools,否则在调试启动时,会报错;

spring-boot-devtools 会在类路径上的文件发生更改时自动重启,方便开发调试。在项目部署时,通过 java -jar 启动项目时,会自动禁用开发工具。报错的原因下面说明。

分片规则配置

4.1 application.yml

server:   port: 8080 spring:   main:     # 处理连接池冲突     allow-bean-definition-overriding: true   datasource:     # shardingsphere5.3.0引入ShardingSphereDriver数据库驱动     driver-class-name: org.apache.shardingsphere.driver.ShardingSphereDriver     url: jdbc:shardingsphere:classpath:sharding.yml

指定分片规则的文件为sharding.yml。

4.2 sharding.yml

dataSources:   order_ds:     dataSourceClassName: com.zaxxer.hikari.HikariDataSource     driverClassName: com.mysql.cj.jdbc.Driver     url: jdbc:mysql://localhost:3306/shardingjdbctest?useUnicode=true&characterEncoding=utf8&serverTimezone=GMT%2B8&useSSL=false     username: root     password: 123456  rules: - !SHARDING   tables:     tb_order: #逻辑表       actualDataNodes: order_ds.tb_order  #表是自动创建       keyGenerateStrategy: # 指定主键生成策略         column: order_id         keyGeneratorName: snowflake       tableStrategy:         standard:            shardingColumn: order_time   #分片键           shardingAlgorithmName: custom-time-sharding   shardingAlgorithms:  #分片算法    custom-time-sharding:      type: CLASS_BASED   #自定义类      props:        strategy: standard        algorithmClassName: com.jingai.sharding.jdbc.algorithm.OrderTimeShardingAlgorithm  #分片算法   keyGenerators:  # 主键生成器     snowflake:       type: SNOWFLAKE props:   sql-show: true  # 是否打印sql

1)配置真实表为tb_order,作为分表的表前缀;

2)配置分表策略为standard标准策略,以订单创建日期为分片键;

3)配置分表算法为自定义类OrderTimeShardingAlgorithm;

分片算法OrderTimeShardingAlgorithm

package com.jingai.sharding.jdbc.algorithm;   @Slf4j public class OrderTimeShardingAlgorithm implements StandardShardingAlgorithm {      private static final DateFormat TABLE_SHARD_TIME_FORMAT = new SimpleDateFormat("yyyyMM");      // 表分片符号。如:tb_order_202407     private static final String TABLE_SPLIT_SYMBOL = "_";      private Properties props;      @Override     public String doSharding(Collection availableTargetNames, PreciseShardingValue shardingValue) {         String logicTableName = shardingValue.getLogicTableName();         log.info("精准分片,逻辑表名:{},节点表名:{}", logicTableName, availableTargetNames);         Date time = shardingValue.getValue();         String result = logicTableName + TABLE_SPLIT_SYMBOL + TABLE_SHARD_TIME_FORMAT.format(time);         // 在配置中,只配置了逻辑表名。如果只有一个,且是逻辑表名,说明需要获取所有表名         initAvailableTargetNames(availableTargetNames, logicTableName);         return getAndCreateShardingTable(logicTableName, result, availableTargetNames);     }      @Override     public Collection doSharding(Collection availableTargetNames, RangeShardingValue shardingValue) {         String logicTableName = shardingValue.getLogicTableName();         log.info("精准分片,逻辑表名:{},节点表名:{}", logicTableName, availableTargetNames);          // 在配置中,只配置了逻辑表名。如果只有一个,且是逻辑表名,说明需要获取所有表名         initAvailableTargetNames(availableTargetNames, logicTableName);          Range valueRange = shardingValue.getValueRange();          // 如果没有最大值或最小值,则全库扫描         if(!valueRange.hasLowerBound() || !valueRange.hasUpperBound()) {             return availableTargetNames;         }          Date min = valueRange.lowerEndpoint();         Date max = valueRange.upperEndpoint();          Set rs = new HashSet<>();         while (min.compareTo(max) <= 0) {             String tableName = logicTableName + "_" + TABLE_SHARD_TIME_FORMAT.format(min);             rs.add(tableName);             min = DateUtils.addMonths(min, 1);         }         return getAndCreateShardingTable(logicTableName, rs, availableTargetNames);     }      private void initAvailableTargetNames(Collection availableTargetNames, String logicTableName) {         if(availableTargetNames.size() == 1 && availableTargetNames.contains(logicTableName)) {             Set allTableNameBySchema = ShardingAlgorithmUtil.getAllTableNameBySchema(logicTableName);             availableTargetNames.clear();             availableTargetNames.addAll(allTableNameBySchema);         }     }      /**      * 检查可用的真实表,如果表名不存在,则创建新表      * @param logicTableName 逻辑表      * @param resultTableNames 操作需要的真实表      * @param availableTargetNames 可用的真实表      * @return 分片的真实表      */     private List getAndCreateShardingTable(String logicTableName, Set resultTableNames, Collection availableTargetNames) {         return resultTableNames.stream().map(name -> getAndCreateShardingTable(logicTableName, name, availableTargetNames)).collect(Collectors.toList());     }      /**      * 检查可用的真实表,如果表名不存在,则创建新表      * @param logicTableName      * @param resultTableName      * @param availableTargetNames      * @return      */     private String getAndCreateShardingTable(String logicTableName, String resultTableName, Collection availableTargetNames) {         if(availableTargetNames.contains(resultTableName)) {             return resultTableName;         }         boolean rs = ShardingAlgorithmUtil.createShardingTable(logicTableName, resultTableName);         if(rs) {             availableTargetNames.add(resultTableName);             return resultTableName;         }         return null;     }      @Override     public Properties getProps() {         return props;     }      @Override     public void init(Properties properties) {         this.props = properties;     } } 

1)实现StandardShardingAlgorithm接口,重写doSharding()方法;

2)根据传入的时间分片值,解析出年月,和逻辑表组合,为实际操作的真实表;

3)如果当前的真实表不存在,则调用工具类ShardingAlgorithmUtil创建一个真实表;

工具类ShardingAlgorithmUtil

package com.jingai.sharding.jdbc.util;  @Slf4j public class ShardingAlgorithmUtil {      // 表分片符号。如:tb_order_202407     private static final String TABLE_SPLIT_SYMBOL = "_";      // 配置的数据库源     private volatile static Map> dataSources = null;      public static void init(String url) {         Assert.hasText(url, "分片策略不能为空");         log.info("数据源获取...");         byte[] bytes = new ShardingSphereDriverURL(url).toConfigurationBytes();         try {             YamlRootConfiguration yamlRootConfiguration = YamlEngine.unmarshal(bytes, YamlRootConfiguration.class);             dataSources = yamlRootConfiguration.getDataSources();         } catch(Exception e) {             e.printStackTrace();             log.error("分片策略配置解析失败");             throw new IllegalArgumentException("分片策略解析失败");         }     }      /**      * 获取所有真实表名      */     public static Set getAllTableNameBySchema(String logicTableName) {         Assert.notNull(dataSources, "分片策略配置未初始化");         Set rs = new HashSet<>();         // 获取配置的数据源         String startTable = logicTableName + TABLE_SPLIT_SYMBOL;         for (Map dataSource : dataSources.values()) {             try (Connection conn = DriverManager.getConnection(dataSource.get("url").toString(),                     dataSource.get("username").toString(), dataSource.get("password").toString())){                 Statement statement = conn.createStatement();                 ResultSet resultSet = statement.executeQuery("show tables like '" + startTable + "%'");                 while (resultSet.next()) {                     String tableName = resultSet.getString(1);                     if(StringUtils.hasText(tableName) && tableName.replaceFirst(startTable, "").matches("\\d{6}")) {                         rs.add(tableName);                     }                 }             } catch(Exception e) {                 e.printStackTrace();                 throw new IllegalArgumentException("数据库连接失败");             }         }         return rs;     }      /**      * 创建分表      * @param logicTableName      * @param resultTableName      * @return      */     public static boolean createShardingTable(String logicTableName, String resultTableName) {         synchronized (logicTableName.intern()) {             for (Map dataSource : dataSources.values()) {                 try (Connection conn = DriverManager.getConnection(dataSource.get("url").toString(),                         dataSource.get("username").toString(), dataSource.get("password").toString())){                     Statement statement = conn.createStatement();                     log.info("创建{}表", resultTableName);                     statement.execute("create table if not exists `" + resultTableName + "` like `" + logicTableName + "`;");                 } catch(Exception e) {                     e.printStackTrace();                     throw new IllegalArgumentException("数据库连接失败");                 }             }             return true;         }     }  } 

1)init(String url) 初始化方法,通过传入的url(application.yml中配置的spring.datasource.url),解析分片配置文件,得到配置的datasources信息;

2)getAllTableNameBySchema(String logicTableName),通过传入的逻辑表(配置中的tb_order),结合配置的datasources信息,创建连接,从数据库中获取表名以tb_order为前缀的表。即数据库中的真实表;

真实表只需从主库中获取即可,此处可以完善。

3)createShardingTable(),结合配置的datasources信息,创建连接,创建真实表;

初始化类

package com.jingai.sharding.jdbc.listener;  @Component @Slf4j public class ShardingInitRunner implements InitializingBean {      @Value("${spring.datasource.url}")     private String url;      @Override     public void afterPropertiesSet() throws Exception {         log.info("sharding初始化...");         ShardingAlgorithmUtil.init(url);     }  } 

该类获取spring.datasource.url的配置值,在初始化方法中,调用ShardingAlgorithmUtil.init(url),初始化ShardingAlgorithmUtil中的datasource值。

1)如果引入了spring-boot-devtools依赖,开启开发工具。项目启动的时候,ShardingAlgorithmUtil类的类加载器为devtools包下的RestartClassLoader,并执行了初始化,获取了datasources;

2)在分片算法OrderTimeShardingAlgorithm的类加载器为AppClassLoader,OrderTimeShardingAlgorithm中调用ShardingAlgorithmUtil时,会用AppClassLoader重新加载一次ShardingAlgorithmUtil,此时的datasources为null;

3)此时执行ShardingAlgorithmUtil操作数据库时,会报空指针;

 实体类

package com.jingai.sharing.jdbc.entity;  @Data @ToString @TableName("tb_order") public class OrderEntity {      private long orderId;     private long memberId;     private float totalPrice;     private String status;     private Date orderTime;  }

在实体类中,@TableName指定配置中的逻辑表。

Mapper类

package com.jingai.sharing.jdbc.dao;  public interface OrderMapper extends BaseMapper {      @Insert("insert into tb_order(member_id, total_price, status, order_time) values " +             "(#{memberId}, #{totalPrice}, #{status}, #{orderTime})")     @Options(useGeneratedKeys = true, keyProperty = "orderId")     int insert2(OrderEntity order); } 

在4.2的配置中,通过key-generator设置了逻辑表的主键生成策略为雪花算法。当进行数据插入时,需要编写新的插入接口,不能直接使用Mybatis-plus中的insert()接口。因为在默认的insert()接口中,实体对象的orderId为0,不会走配置的雪花算法。

Service类

package com.jingai.sharing.jdbc.service;   @Service public class OrderService extends ServiceImpl {      @Resource     private OrderMapper orderMapper;      public long insert2(OrderEntity order) {         int rs = orderMapper.insert2(order);         return rs > 0 ? order.getOrderId() : 0;     }  } 

为了便于测试,此处省略了Service的接口类。

Controller类

@RestController public class OrderController {      @Resource     private OrderService orderService;      @RequestMapping("order")     public String order(OrderEntity order) {         order.setOrderTime(new Date());         long insert = orderService.insert2(order);         return insert > 0 ? "success" : "fail";     }      @RequestMapping("list")     public List list() {         return orderService.list();     }  }

小结

以上为本篇分享的全部内容。以下做一个小结:

1)创建一个基准表tb_order;

2)配置分片规则:标准策略、以订单时间为分片键、自定义分片算法;

3)在分片算法中,根据分片键的值日期值,找到对应月份的表。如果真实表不存在,则创建;

关于本篇内容你有什么自己的想法或独到见解,欢迎在评论区一起交流探讨下吧。

相关内容

热门资讯

推荐十款WepOke软件透明挂... 推荐十款WepOke软件透明挂!太过分了其实真的是有挂的(有挂细节)(哔哩哔哩);一、AI软件牌型概...
免费测试版!德州wpk(wpK... 免费测试版!德州wpk(wpK)辅助透视!(辅助透视)详细教程(2020已更新)(哔哩哔哩);wpk...
一起来探讨微扑克规律原来是有挂... 一起来探讨微扑克规律原来是有挂,太过分了原来真的有挂,详细教程(有挂辅助)是一款可以让一直输的玩家,...
细节方法!wpk安卓版本(wP... 细节方法!wpk安卓版本(wPK)透视辅助!(辅助透视)详细教程(2021已更新)(哔哩哔哩)相信很...
技术分享《wpK辅助透视》太坑... 技术分享《wpK辅助透视》太坑了其实是有挂(有挂攻略)是一款可以让一直输的玩家,快速成为一个“必胜”...
必知教程!(WPK控制)透视辅... 您好,WPK这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家在这款游戏中...
实测分享!微扑克线上辅助挂(辅... 实测分享!微扑克线上辅助挂(辅助挂)原来真的是有挂(有挂神器)详细教程(哔哩哔哩);1、很好的工具软...
新2024教程!(wpk猫腻)... 新2024教程!(wpk猫腻)辅助透视!(透视)外挂辅助挂插件(2024已更新)(哔哩哔哩)【福星临...
最新技巧《wpk微扑克透视辅助... 最新技巧《wpk微扑克透视辅助》太坑了果然确实真的有挂(有挂教程)最新技巧《wpk微扑克透视辅助》太...
总算清楚!wpk苹果版(Wpk... 您好,wpk这款游戏可以开挂的,确实是有挂的,需要了解加微【439369440】很多玩家在这款游戏中...