Transformer模型:Decoder的self-attention mask实现
创始人
2025-01-08 16:06:28
0

前言

        这是对Transformer模型Word Embedding、Postion Embedding、Encoder self-attention mask、intra-attention mask内容的续篇。

视频链接:20、Transformer模型Decoder原理精讲及其PyTorch逐行实现_哔哩哔哩_bilibili

文章链接:Transformer模型:WordEmbedding实现-CSDN博客

                  Transformer模型:Postion Embedding实现-CSDN博客

                  Transformer模型:Encoder的self-attention mask实现-CSDN博客

                  Transformer模型:intra-attention mask实现-CSDN博客


 正文

        首先介绍一下Deoder的self-attention mask,它与前面的两个mask不一样地方在于Decoder是生成一个单词之后,将改单词作为输入给到Decoder中继续生成下一个,也就是相当于下三角矩阵,一次多一个,直到完成整个预测。

        先生成一个下三角矩阵:

tri_matrix = [torch.tril(torch.ones(L, L)) for L in tgt_len]

         这里生成的两个下三角矩阵的维度是不一样的,首先要统一维度:

valid_decoder_tri_matrix = [F.pad(torch.tril(torch.ones(L, L)), (0, max_tgt_seg_len-L, 0, max_tgt_seg_len-L)) for L in tgt_len]

        然后就是将它转为1个3维的张量形式,过程跟先前类似,这里就不一步步拆解了:

valid_decoder_tri_matrix = torch.cat([torch.unsqueeze(F.pad(torch.tril(torch.ones(L, L)), (0, max_tgt_seg_len-L, 0, max_tgt_seg_len-L)),0) for L in tgt_len]) 

        后续掩码过程还是跟前两篇一样,这里也不多解释了:

invalid_decoder_tri_matrix = 1 - valid_decoder_tri_matrix mask_decoder_self_attention = invalid_decoder_tri_matrix.to(torch.bool) score2 = torch.randn(batch_size, max_tgt_seg_len, max_tgt_seg_len) mask_score3 = score2.masked_fill(mask_decoder_self_attention, -1e9) prob3 = F.softmax(mask_score3, -1)

 代码

import torch import numpy as np import torch.nn as nn import torch.nn.functional as F  # 句子数 batch_size = 2  # 单词表大小 max_num_src_words = 10 max_num_tgt_words = 10  # 序列的最大长度 max_src_seg_len = 12 max_tgt_seg_len = 12 max_position_len = 12  # 模型的维度 model_dim = 8  # 生成固定长度的序列 src_len = torch.Tensor([11, 9]).to(torch.int32) tgt_len = torch.Tensor([10, 11]).to(torch.int32)  # 单词索引构成的句子 src_seq = torch.cat(     [torch.unsqueeze(F.pad(torch.randint(1, max_num_src_words, (L,)), (0, max_src_seg_len - L)), 0) for L in src_len]) tgt_seq = torch.cat(     [torch.unsqueeze(F.pad(torch.randint(1, max_num_tgt_words, (L,)), (0, max_tgt_seg_len - L)), 0) for L in tgt_len])  # Part1:构造Word Embedding src_embedding_table = nn.Embedding(max_num_src_words + 1, model_dim) tgt_embedding_table = nn.Embedding(max_num_tgt_words + 1, model_dim) src_embedding = src_embedding_table(src_seq) tgt_embedding = tgt_embedding_table(tgt_seq)  # 构造Pos序列跟i序列 pos_mat = torch.arange(max_position_len).reshape((-1, 1)) i_mat = torch.pow(10000, torch.arange(0, 8, 2) / model_dim)  # Part2:构造Position Embedding pe_embedding_table = torch.zeros(max_position_len, model_dim) pe_embedding_table[:, 0::2] = torch.sin(pos_mat / i_mat) pe_embedding_table[:, 1::2] = torch.cos(pos_mat / i_mat)  pe_embedding = nn.Embedding(max_position_len, model_dim) pe_embedding.weight = nn.Parameter(pe_embedding_table, requires_grad=False)  # 构建位置索引 src_pos = torch.cat([torch.unsqueeze(torch.arange(max_position_len), 0) for _ in src_len]).to(torch.int32) tgt_pos = torch.cat([torch.unsqueeze(torch.arange(max_position_len), 0) for _ in tgt_len]).to(torch.int32)  src_pe_embedding = pe_embedding(src_pos) tgt_pe_embedding = pe_embedding(tgt_pos)  # Part3:构造encoder self-attention mask valid_encoder_pos = torch.unsqueeze(     torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max_src_seg_len - L)), 0) for L in src_len]), 2) valid_encoder_pos_matrix = torch.bmm(valid_encoder_pos, valid_encoder_pos.transpose(1, 2)) invalid_encoder_pos_matrix = 1 - torch.bmm(valid_encoder_pos, valid_encoder_pos.transpose(1, 2)) mask_encoder_self_attention = invalid_encoder_pos_matrix.to(torch.bool) score = torch.randn(batch_size, max_src_seg_len, max_src_seg_len) mask_score1 = score.masked_fill(mask_encoder_self_attention, -1e9) prob1 = F.softmax(mask_score1, -1)  # Part4:构造intra-attention mask valid_encoder_pos = torch.unsqueeze(     torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max_src_seg_len - L)), 0) for L in src_len]), 2) valid_decoder_pos = torch.unsqueeze(     torch.cat([torch.unsqueeze(F.pad(torch.ones(L), (0, max_tgt_seg_len - L)), 0) for L in tgt_len]), 2)  valid_cross_pos_matrix = torch.bmm(valid_decoder_pos, valid_encoder_pos.transpose(1, 2)) invalid_cross_pos_matrix = 1 - valid_cross_pos_matrix mask_cross_attention = invalid_cross_pos_matrix.to(torch.bool) mask_score2 = score.masked_fill(mask_cross_attention, -1e9) prob2 = F.softmax(mask_score2, -1)  # Part5:构造Decoder self-attention mask valid_decoder_tri_matrix = torch.cat([torch.unsqueeze(F.pad(torch.tril(torch.ones(L, L)), (0, max_tgt_seg_len-L, 0, max_tgt_seg_len-L)),0) for L in tgt_len]) invalid_decoder_tri_matrix = 1 - valid_decoder_tri_matrix mask_decoder_self_attention = invalid_decoder_tri_matrix.to(torch.bool) score2 = torch.randn(batch_size, max_tgt_seg_len, max_tgt_seg_len) mask_score3 = score2.masked_fill(mask_decoder_self_attention, -1e9) prob3 = F.softmax(mask_score3, -1)

相关内容

热门资讯

微扑克游戏辅助器(微扑克)微扑... 微扑克游戏辅助器(微扑克)微扑克发牌规律性(透视)总是是真的有挂(详细辅助新2025版);在进入微扑...
透视线上(德州wepower)... 透视线上(德州wepower)德扑起手牌胜率图(透视)竟然是有挂(详细辅助揭秘攻略)1、透视线上(德...
微扑克wpk透视辅助(微扑克)... 微扑克wpk透视辅助(微扑克)微扑克辅助哪里有卖(透视)一贯是真的有挂(详细辅助2025新版教程)1...
透视攻略(德州俱乐部)德扑之星... 透视攻略(德州俱乐部)德扑之星作弊(透视)总是真的有挂(详细辅助透牌教程)1、操作简单,无需注册,只...
透视ai代打(云扑克德州)智星... 透视ai代打(云扑克德州)智星德州菠萝外挂(透视)竟然真的是有挂(详细辅助插件教程)1、上手简单,内...
透视教程(线上德州)智星德州菠... 透视教程(线上德州)智星德州菠萝开挂(透视)都是是有挂(详细辅助解密教程)1、智星德州菠萝开挂透视辅...
透视代打(德州wepower)... 透视代打(德州wepower)德扑ai智能(透视)一直是有挂(详细辅助AI教程)1、任何德扑ai智能...
透视能赢(wepower德州)... 透视能赢(wepower德州)德州ai人工智能(透视)都是真的是有挂(详细辅助切实教程);1、德州a...
透视系统(德州之星)智星德州菠... 透视系统(德州之星)智星德州菠萝(透视)竟然真的是有挂(详细辅助教你攻略);1、下载好智星德州菠萝辅...
透视计算(wepower德州)... 透视计算(wepower德州)德州ai辅助有用(透视)总是是有挂(详细辅助必备教程)1、德州ai辅助...