多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

玩家必看分享“途游辅助官网”讲... 玩家必看分享“途游辅助官网”讲解开挂作弊辅助助手(竟然有挂);1、AI玩家辅助神器收集数据:讲大量的...
我来教大家!丽水茶苑游戏辅助,... 我来教大家!丽水茶苑游戏辅助,天酷辅助巡查系统,2025新版总结(有挂头条)是一款可以让一直输的玩家...
揭秘“竹间穿有挂没”科普开挂作... 揭秘“竹间穿有挂没”科普开挂作弊辅助插件(起初是有挂)是一款可以让一直输的玩家,快速成为一个“必胜”...
一分钟教会你!钱塘13挂件,欢... 一分钟教会你!钱塘13挂件,欢乐对决脚本,透牌教程(真是有挂);1、超多福利:超高返利,海量正版游戏...
安装程序教程“摸一把跑得快有挂... 安装程序教程“摸一把跑得快有挂”专业开挂作弊辅助器(切实真的是有挂)是一款可以让一直输的玩家,快速成...
推荐十款!大菠萝挂机辅助,潮友... 推荐十款!大菠萝挂机辅助,潮友会app下载安卓辅助软件,插件教程(有挂方式);推荐十款!大菠萝挂机辅...
玩家必看科普“友友邳州辅助软件... 您好:友友邳州辅助软件下载这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户...
一分钟揭秘!兄弟13水修改器,... 您好:微信雀神小程序插件这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的...
科技新动态“边锋老友可以开辅助... 科技新动态“边锋老友可以开辅助”解密开挂作弊辅助安装(竟然存在有挂)是一款可以让一直输的玩家,快速成...
实操分享!免费宝宝浙江游戏辅助... 实操分享!免费宝宝浙江游戏辅助,网易棋牌辅助器,专业教程(有挂秘笈);人气非常高,ai更新快且高清可...