多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

1分钟了解(河洛杠外挂透视辅助... 1分钟了解(河洛杠外挂透视辅助安装!透视俱乐部)透明挂(2023已更新)(哔哩哔哩)是一款可以让一直...
5分钟了解!wepoke数据外... 5分钟了解!wepoke数据外挂透明挂辅助插件(透明挂)透明挂软件(2021已更新)(哔哩哔哩);亲...
八分钟了解"边锋老友... 八分钟了解"边锋老友荣成麻将外挂透明挂辅助工具"透视猫腻(2021已更新)(哔哩哔哩)是一款可以让一...
透视数据!智星德州菠萝外挂检测... 您好,智星德州菠萝这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家在这款...
六分钟了解(广西老友玩游戏外挂... 六分钟了解(广西老友玩游戏外挂透视辅助挂!透明挂逻辑)透明挂(2022已更新)(哔哩哔哩);亲,有的...
两分钟了解!闲来广东麻将透视辅... 两分钟了解!闲来广东麻将透视辅助脚本(辅助挂)微乐教程(2020已更新)(哔哩哔哩)是一款可以让一直...
玩家必看秘籍!微扑克有后台控制... 玩家必看秘籍!微扑克有后台控制的(透视辅助)微扑克软件(2023已更新)(哔哩哔哩);致您一封信;亲...
透视挂!龙尊娱乐场透明挂苹果版... 透视挂!龙尊娱乐场透明挂苹果版教程(辅助挂)辅助下载(2025已更新)(哔哩哔哩);AI智能教程细节...
8分钟了解(闲玩app外挂透视... 8分钟了解(闲玩app外挂透视辅助器!透视辅助输赢)辅助挂(2022已更新)(哔哩哔哩);闲玩app...
8分钟了解!慢圈麻将外挂透视辅... 您好,慢圈麻将这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302】很多玩家在这款游戏...