多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

透视讲解!wepoker辅助软... 透视讲解!wepoker辅助软件价格(透视)wepoker能不能透视(切实真的有挂)wepoker辅...
透视计算!德州透视脚本(透视)... 透视计算!德州透视脚本(透视)黑科技教程(2020已更新)(哔哩哔哩)1、用户打开应用后不用登录就可...
透视苹果版!wepoker透视... 透视苹果版!wepoker透视脚本(透视)辅助是真的假的(原来是有挂)1、点击下载安装,wepoke...
透视插件!wepokerplu... 透视插件!wepokerplus脚本(透视)wepoker是不是有人用挂(都是有挂)1、wepoke...
透视挂!pokermaster... 透视挂!pokermaster脚本(透视)必胜教程(2022已更新)(哔哩哔哩);1、pokerma...
透视ai代打!wepoker透... 透视ai代打!wepoker透视脚本免费使用视频(透视)辅助透视软件(一直真的是有挂)1、首先打开w...
透视脚本!WePoKer辅助器... 透视脚本!WePoKer辅助器(透视)wepoker脚本下载(竟然是有挂)1、下载好wepoker脚...
透视好友!wepoker有没有... 透视好友!wepoker有没有机器人(透视)有机器人(都是有挂)1、让任何用户在无需wepoker有...
透视存在!哈糖大菠萝有挂吗(透... 透视存在!哈糖大菠萝有挂吗(透视)可靠技巧(2023已更新)(哔哩哔哩);哈糖大菠萝有挂吗辅助器中分...
透视ai!wepokerplu... 透视ai!wepokerplus到底是挂了吗(透视)wepoker私人局透视教程(总是存在有挂);1...