多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

发现玩家!微扑克网页版辅助(透... 发现玩家!微扑克网页版辅助(透视)外挂透明挂辅助助手(2023已更新)(哔哩哔哩)该软件可以轻松地帮...
记者揭秘!(智星德州)线上wp... 记者揭秘!(智星德州)线上wpk到底有没有外挂(2021已更新)(哔哩哔哩)1)线上wpk到底有没有...
黑科技私人局(wepoke黑科... 相信很多朋友都在电脑上玩过wepokewopoker透明挂吧,但是很多朋友都在抱怨用电脑玩起来不方便...
黑科技辅助(wepoke黑科技... 黑科技辅助(wepoke黑科技)wpk数据清零(透视)普及教程(2026已更新)(哔哩哔哩)1、这是...
黑科技最新!wpk德州辅助器是... 黑科技最新!wpk德州辅助器是真的是假(透视)本来是有挂(2020已更新)(哔哩哔哩)所有人都在同一...
1.9分钟了解!wepower... 1.9分钟了解!wepower线上游戏发牌机制规律(透视)外挂透明挂辅助挂(2023已更新)(哔哩哔...
黑科技免费(wepoke智能a... 黑科技免费(wepoke智能ai)wepoke软件太假了(wepoker)先前真的是有挂(有挂讲解)...
必备攻略(WePoke)德州w... 必备攻略(WePoke)德州wepower辅助器ai(2026已更新)(哔哩哔哩);必备攻略(WeP...
黑科技辅助(wepoke透明黑... 1、黑科技辅助(wepoke透明黑科技)德扑人工智能(透视)新版2025教程(2022已更新)(哔哩...
黑科技讲解!aapoker辅助... 黑科技讲解!aapoker辅助工具存在吗(透视)一贯存在有挂(2026已更新)(哔哩哔哩)1、全新机...