多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

四分钟黑科技!wepoke辅助... 四分钟黑科技!wepoke辅助软件靠谱吗,德扑之星软件靠普吗,技巧教程(有挂黑科技);最新版2024...
app黑科技!wepoke软件... app黑科技!wepoke软件透明下载渠道(透视)太坑了有挂(科技教程黑科技插件)一、wepoke软...
aapoker透视辅助!德州a... aapoker透视辅助!德州ai辅助神器app,aapoker是谁开发的,2025教程(确实存在有挂...
第7分钟黑科技!wpk辅助插件... 第7分钟黑科技!wpk辅助插件,wepoke游戏辅助工具,透牌教程(有挂黑科技)1、玩家可以在wpk...
软件黑科技!德州ai辅助神器下... 软件黑科技!德州ai辅助神器下载(透视)太坑了是真的有挂(2025教程黑科技细节);1.德州ai辅助...
红龙扑克透牌规则!微扑克必胜技... 红龙扑克透牌规则!微扑克必胜技巧,德州ai辅助神器机器人,科技教程(素来真的是有挂);亲真的是有正版...
三分钟黑科技!aa扑克发牌机制... 三分钟黑科技!aa扑克发牌机制,智星德州有挂吗,玩家教程(有挂黑科技)1、不需要AI权限,帮助你快速...
最新黑科技!wpk有辅助挂吗(... 最新黑科技!wpk有辅助挂吗(透视)太坑了是真的有挂(德州教程黑科技方法);wpk有辅助挂吗辅助器中...
美元局黑科技!wopoker德... 美元局黑科技!wopoker德州真的有挂吗(透视)太坑了真的有挂(2025新版总结黑科技脚本);该软...
4分钟黑科技!wpk有透视辅助... 4分钟黑科技!wpk有透视辅助,智星德州菠萝偷偷看功能,透明挂教程(有挂黑科技);玩家必备必赢加哟《...