多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

透视肯定!模拟器打开hhpok... 透视肯定!模拟器打开hhpoker,约局吧德州可以透视吗(透视)好像有开挂辅助安装(有开挂透视),约...
玩家必用!wepoker破解工... 玩家必用!wepoker破解工具,wpk有那种辅助吗(透视)一贯有开挂辅助黑科技(有开挂教学);1、...
透视最新!wepoker透视版... 透视最新!wepoker透视版下载,wepoker辅助器下载(透视)本来有开挂辅助器(有开挂秘笈);...
让我来分享经验!wpk俱乐部是... 您好,aapoker怎么提高中牌率这款游戏可以开挂的,确实是有挂的,需要了解加微【136704302...
教程攻略!wpk软件是真的吗,... 教程攻略!wpk软件是真的吗,wepoker安装教程(透视)竟然有开挂辅助黑科技(有开挂技巧);一、...
重大通报!wepoker有没有... 重大通报!wepoker有没有挂,wpk有辅助器吗(透视)竟然有开挂辅助器(竟然有开挂);小薇(透视...
最新技巧!wpk真的有透视嘛,... 最新技巧!wpk真的有透视嘛,WePoKer辅助器(透视)从前有开挂辅助神器(有开挂猫腻);1、德州...
必备科技!来玩app破解,wp... 必备科技!来玩app破解,wpk俱乐部是做什么的(透视)确实有开挂辅助安装(有开挂细节);wpk俱乐...
重大通报!wepoker有没有... 您好:wepokerplus透视脚本免费这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都...
透视科技!wepoker黑侠辅... 透视科技!wepoker黑侠辅助器,福建大菠萝万能辅助器(透视)其实有开挂辅助器(有开挂功能);1、...