多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

算法刷题笔记 最大异或对(详细... 文章目录题目描述基本思路实现代码题目描述在给定的N个整数A1,A2……AN中选出两个进...
React工程化笔记 脚手架可以帮助我们快速的搭建一个项目结构,在我们之前学习 webpack 的过程中&#...
Jupyter Noteboo... Jupyter Notebook 安装教程目录前提条件安装Python下载Python安装Pytho...
大话设计模式 设计模式专栏概览参考《大话设计模式》,进行深入分析理解;使用C+...
Docker Push Doc... 首先可以参考 Docker | 将自己的docker镜像推送到docker hub[图文详情]_如何...
必备科技!(WPK苹果版本)辅... 必备科技!(WPK苹果版本)辅助透视!(透视)外挂辅助器软件(2020已更新)(哔哩哔哩);WPK最...
Linux C++ 051-设... Linux C++ 051-设计模式之中介者模式本节关键字:Linux...
Docker存储目录问题,如何... 文章目录如何更改docker默认存储路径?版本1(没测试)...
卡码网语言基础课 | 5. A... 目录1、问题描述2、代码1、问题描述题目描述:计算若干整数的和。 输入描述࿱...
重大通报《Wepoke玄学》软... 重大通报《Wepoke玄学》软件透明挂!(软件)透明挂系统(2021已更新)(哔哩哔哩);1、点击下...