多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

八分钟透视!竞技联盟辅助,xp... 八分钟透视!竞技联盟辅助,xpoker透视辅助(透视)2025新版(确实有挂)1、进入到竞技联盟辅助...
七分钟透明挂!德州透视是真的假... 七分钟透明挂!德州透视是真的假的,hhpoker透视脚本视频(透视)必备教程(果真有挂)1、德州透视...
4分钟知晓!wpk透视辅助方法... 4分钟知晓!wpk透视辅助方法,pokernow辅助控制(透视)2025新版技巧(今日头条)wpk透...
四分钟知晓!哈糖大菠萝助手,p... 四分钟知晓!哈糖大菠萝助手,pokemmo手机版脚本免费(透视)可靠技巧(真实有挂)1、上手简单,内...
第4分钟透明挂!德普之星app... 第4分钟透明挂!德普之星app安卓版破解版,大菠萝789辅助器下载(透视)科技教程(果真有挂)进入游...
第四分钟辅助挂!epoker免... 第四分钟辅助挂!epoker免费透视脚本,pokemmo手机版修改器(透视)安装教程(有挂教程)po...
第4分钟透明挂!wepoker... 第4分钟透明挂!wepoker正确养号方法,德普之星怎么开辅助(透视)解密教程(揭秘有挂)1、玩家可...
一分钟私人局!德州来玩辅助器,... 一分钟私人局!德州来玩辅助器,wepoker透视脚本下载(透视)黑科技教程(有挂教学)1、wepok...
三分钟透明挂!wepoker免... 三分钟透明挂!wepoker免费脚本咨询,wejoker辅助机器人(透视)细节揭秘(新版有挂)1、w...
第一分钟普及!aapoker透... 第一分钟普及!aapoker透视怎么用,we poker插件(透视)玩家教程(发现有挂)暗藏猫腻,小...