多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

九分钟了解!wepoker免费... 九分钟了解!wepoker免费透视脚本(透视)外挂透视辅助九(原来存在有挂);小薇(透视辅助)致您一...
透视有挂"福建天天开... 透视有挂"福建天天开心辅助真实性"详细辅助介绍教程(本来是真的有挂);1)福建天天开心辅助真实性辅助...
透视数据!pokemmo脚本手... 透视数据!pokemmo脚本手机版(透视)都是真的有挂(详细辅助科技教程)1、任何ai辅助神器的玩家...
教学盘点!hhpoker脚本,... 教学盘点!hhpoker脚本,wepoker私人局透视方法,高科技教程(有挂方法);大神普及一款德州...
第二分钟了解!hhpoker辅... 第二分钟了解!hhpoker辅助(透视)外挂透视辅助第二(其实有挂)1、用户打开应用后不用登录就可以...
透视真的"雀神麻雀充... 透视真的"雀神麻雀充运势有用吗"详细辅助黑科技教程(原来存在有挂);1、很好的工具软件,可以解锁游戏...
终于知道!约局吧是否有挂,如何... 1、终于知道!约局吧是否有挂,如何下载wpk透视版,wepoke教程(有挂技巧)(UU poker、...
透视能赢!哈糖大菠萝怎么挂(透... 透视能赢!哈糖大菠萝怎么挂(透视)果然真的是有挂(详细辅助扑克教程);1、许多玩家不知道辅助软件怎么...
第1分钟了解!wepoker破... 第1分钟了解!wepoker破解器激活码(透视)外挂透视辅助第1(竟然存在有挂)1、进入游戏-大厅左...
交流学习经验!xpoker辅助... 交流学习经验!xpoker辅助器,wepoker有辅助功能吗,wepoke教程(有挂透明);大神普及...