多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

两分钟了解“蜀山四川辅助脚本”... 两分钟了解“蜀山四川辅助脚本”详细透视开挂辅助插件-哔哩哔哩;一、蜀山四川辅助脚本有挂的是的,亲,有...
第九分钟知晓!hhpoker德... 第九分钟知晓!hhpoker德州真的假的,德州局透视脚本下载安装最新版本,细节方法(竟然有挂)-哔哩...
第4分钟了解(德州竞技联盟)外... 第4分钟了解(德州竞技联盟)外挂辅助器(透视)透牌教程(2023已更新)(哔哩哔哩)是一款可以让一直...
第9分钟了解“传送屋激k有没有... 第9分钟了解“传送屋激k有没有挂”详细透视开挂辅助插件-哔哩哔哩;亲,有的,ai轻松简单,又可以获得...
第五分钟知晓!大菠萝免费辅助器... 第五分钟知晓!大菠萝免费辅助器,德普之星辅助功能如何打开,新2025教程(真实有挂)-哔哩哔哩1、每...
两分钟了解(金玉娱乐)外挂透明... 两分钟了解(金玉娱乐)外挂透明挂辅助挂(透视)2025新版(2025已更新)(哔哩哔哩);1、完成金...
第5分钟了解“汇友游戏辅助软件... 第5分钟了解“汇友游戏辅助软件”详细透视开挂辅助脚本-哔哩哔哩;1、完成汇友游戏辅助软件的残局,帮助...
第三分钟俱乐部!wepoker... 第三分钟俱乐部!wepoker私人局怎么玩,we-poker辅助器,科技教程(今日头条)-哔哩哔哩小...
第五分钟了解(xpoker)外... 第五分钟了解(xpoker)外挂透明挂辅助下载(辅助挂)2025新版教程(2021已更新)(哔哩哔哩...
2分钟了解“微信大厅辅助软件”... 2分钟了解“微信大厅辅助软件”详细透视开挂辅助攻略-哔哩哔哩;微信大厅辅助软件最新软件透明挂直接下载...