多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

第四分钟辅助!微乐小程序有脚本... 第四分钟辅助!微乐小程序有脚本吗(辅助挂)从来真的有挂(详细辅助安装教程)1)微乐小程序有脚本吗辅助...
科普常识“多乐游戏辅助脚本平台... 科普常识“多乐游戏辅助脚本平台”wepoker私人定制透视(一贯是有挂);支持多人共享记分板与复盘,...
透视好友!情怀怎么开挂,一起宁... 《透视好友!情怀怎么开挂,一起宁德钓蟹辅助器,技巧教程(有挂辅助)》 一起宁德钓蟹辅助器软件透明挂更...
8分钟辅助(湛江吴川0759麻... 8分钟辅助(湛江吴川0759麻雀)一贯有挂(详细辅助AA德州教程)1、实时湛江吴川0759麻雀开挂更...
第四分钟辅助!开心游戏辅助器(... 第四分钟辅助!开心游戏辅助器(辅助挂)起初有挂(详细辅助大神讲解)1.开心游戏辅助器 ai辅助创建新...
分辨真假“博雅西元红河辅助脚本... 1、分辨真假“博雅西元红河辅助脚本”竞技联盟透视插件(真是真的是有挂);详细教程。2、博雅西元红河辅...
透视神器!边锋嘉兴麻将辅助器,... 透视神器!边锋嘉兴麻将辅助器,同城游辅助软件,介绍教程(有挂攻略);科技安装教程;136704302...
1分钟辅助(新道游科技透视免费... 1分钟辅助(新道游科技透视免费版下载网页)一贯真的是有挂(详细辅助必赢教程)1、操作简单,无需注册,...
分享实测“518互娱脚本”wp... 1、分享实测“518互娱脚本”wpk模拟器(原生是真的有挂)(UU poker、518互娱脚本、xp...
第八分钟辅助(随意玩工具箱辅助... 第八分钟辅助(随意玩工具箱辅助器)好像是真的有挂(详细辅助黑科技教程)1)随意玩工具箱辅助器辅助挂:...