多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

透视规律“wpk透视脚本视频”... 透视规律“wpk透视脚本视频”确实真的有挂(辅助挂)详细辅助2025版教程1、构建自己的辅助插件;2...
透视能赢!aapoker透视插... 透视能赢!aapoker透视插件,wepoker有辅助吗(详细辅助2025新版总结)科技教程也叫必备...
wepoker底牌透视脚本ht... wepoker底牌透视脚本http!aapoker透视脚本下载,wpk辅助ai(详细辅助AI教程)是...
透视计算“wepoker辅助器... 透视计算“wepoker辅助器怎么用”本来真的有挂(辅助挂)详细辅助解密教程;1、透视辅助简单,软件...
hhpoker免费透视脚本!w... hhpoker免费透视脚本!wepoker有辅助工具吗,wepoker脚本下载(详细辅助扑克教程);...
透视辅助!wepoker辅助透... 透视辅助!wepoker辅助透视软件,wpk有辅助器吗(详细辅助我来教教你);实战中需综合运用上述技...
透视实锤“德普之星辅助正版”确... 透视实锤“德普之星辅助正版”确实是真的有挂(辅助挂)详细辅助2025新版教程所有人都在同一条线上,像...
wpk透视表!hhpoker怎... wpk透视表!hhpoker怎么开透视,wepoker透视版下载(详细辅助细节方法);是一款可以让一...
透视系统!wepoker祈福有... 透视系统!wepoker祈福有用吗,邳州友友辅助app官网(切实真的有挂)1.邳州友友辅助app官网...
透视最新!德普之星辅助器,we... 透视最新!德普之星辅助器,wepoker开脚本视频(详细辅助靠谱教程)是一款可以让一直输的玩家,快速...