多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

黑科技游戏(wpk胜率)微扑克... 黑科技游戏(wpk胜率)微扑克大厅其实真的是有挂!太嚣张了从来是真的有挂(2023已更新)(哔哩哔哩...
第七分钟了解!微扑克ai机器人... 第七分钟了解!微扑克ai机器人伙牌,旺旺辅助器,教你攻略(发现有挂)-哔哩哔哩1.旺旺辅助器 ai辅...
黑科技免费(governoro... 黑科技免费(governorofpoker3)轰趴十三水果然有挂!太无语了原本真的有挂(2021已更...
第十分钟了解!微扑克ai辅助实... 第十分钟了解!微扑克ai辅助实战效果,小猪对对碰可以开挂吗,我来教教你(有挂技巧)-哔哩哔哩;1、小...
黑科技中牌率(WPK插件)德州... 黑科技中牌率(WPK插件)德州ai一贯是有挂!太嚣张了原本是真的有挂(2023已更新)(哔哩哔哩);...
第9分钟了解!wpk辅助,17... 第9分钟了解!wpk辅助,17麻将十三水调胜率,大神讲解(有挂细节)-哔哩哔哩进入游戏-大厅左侧-新...
黑科技辅助挂(pokermas... 1、黑科技辅助挂(pokermaster)轰趴大菠萝十三水起初是真的有挂!太无语了一向是真的有挂(2...
第三分钟了解!wepoke软件... 第三分钟了解!wepoke软件透明挂多少钱,宝宝浙江游戏辅助有人在用吗,安装教程(真的有挂)-哔哩哔...
黑科技总结(云扑克app)go... 《governorofpoker3软件透明挂》是一款多人竞技的governorofpoker3辅助透...
五分钟了解!wepoke黑科技... 五分钟了解!wepoke黑科技功能,随意玩拼三张,必胜教程(真的有挂)-哔哩哔哩1、这是跨平台的随意...