多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

德扑ai助手(德扑ai代理)辅... 德扑ai助手(德扑ai代理)辅助器(辅助挂)本来真的有挂(详细线上房间教程)1、不需要AI权限,帮助...
一分钟发现!闲来广东麻将输赢规... 一分钟发现!闲来广东麻将输赢规律,xpoker都是真的有挂,新2025教程(有挂规律)1、玩家可以在...
总算明白!!德扑辅助神器,德扑... 总算明白!!德扑辅助神器,德扑ai智能一直是真的有挂(详细功能教程)一、德扑ai智能AI软件牌型概率...
wpk辅助挂!WEpoke一直... wpk辅助挂!WEpoke一直存在有挂,微扑克wpk安全(详细ai代打辅助脚本教程)1、超多福利:超...
德州ai辅助有用(德扑之星破解... 德州ai辅助有用(德扑之星破解)辅助器(辅助挂)本来是真的有挂(详细ai代理教程)1、德州ai辅助有...
4分钟辅助挂!齐聚天下可以开挂... 4分钟辅助挂!齐聚天下可以开挂吗,线上德州切实是真的有挂,力荐教程(有挂技巧)1、用户打开应用后不用...
透视辅助!红龙扑克辅助脚本,红... 透视辅助!红龙扑克辅助脚本,红龙扑克原来真的有挂(详细辅助挂教程);运辅助工具,进入游戏界面。进入辅...
德扑ai助手!约局吧确实存在有... 德扑ai助手!约局吧确实存在有挂,wepoke德州扑克系统规律(详细辅助机制教程);德扑ai助手辅助...
红龙扑克辅助工具!红龙扑克机制... 红龙扑克辅助工具!红龙扑克机制(红龙扑克)其实存在有挂(详细辅助挂教程);一、AI软件牌型概率发牌机...
9分钟科普!四川游戏家园丁二红... 9分钟科普!四川游戏家园丁二红有挂吗,poker其实有挂,玩家教你(有挂工具);1、这是跨平台的四川...