多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

透视模拟器(aAPOKER)a... 透视模拟器(aAPOKER)aa扑克辅助(透视)一直是有挂(详细辅助教你攻略)1、aa扑克辅助透视辅...
透视私人局!德州ai辅助软件,... 透视私人局!德州ai辅助软件,(wepower德州)本来是真的有挂(详细辅助解密教程);1、下载好德...
透视游戏(WpK)wpk有辅助... 透视游戏(WpK)wpk有辅助挂(透视)详细辅助爆料教程(竟然真的是有挂);1、用户打开应用后不用登...
透视辅助(Aapoker)aa... 透视辅助(Aapoker)aapoker辅助工具存在(透视)真是存在有挂(详细辅助玩家教你);亲,关...
透视能赢!德州ai人工智能,(... 透视能赢!德州ai人工智能,(线上wpk德州)原来存在有挂(详细辅助教你教程);1、德州ai人工智能...
透视插件(wpK)微扑克德州专... 透视插件(wpK)微扑克德州专用辅助器(透视)详细辅助高科技教程(其实真的是有挂)1、首先打开微扑克...
透视模拟器(AAPoker)a... 透视模拟器(AAPoker)aapoker俱乐部(透视)果然真的是有挂(详细辅助必备教程);aapo...
透视安装!德州微扑克辅助,(n... 透视安装!德州微扑克辅助,(nzt德州)本来有挂(详细辅助软件教程)1、该软件可以轻松地帮助玩家将德...
透视肯定(wpK)微扑克全自动... 透视肯定(wpK)微扑克全自动机器人(透视)详细辅助辅助教程(好像是有挂)1、每一步都需要思考,不同...
透视能赢(德州aapoker)... 透视能赢(德州aapoker)aapoker猫腻(透视)一直真的有挂(详细辅助技巧教程);1、aap...