多类支持向量机损失(SVM损失)
创始人
2025-01-07 20:34:53
0

(SVM) 损失。SVM 损失的设置是,SVM“希望”每个图像的正确类别的得分比错误类别高出一定幅度Δ。
在这里插入图片描述
即假设有一个分数集合s=[13,−7,11]
如果y0为真实值,超参数为10,则该损失值为
在这里插入图片描述
超参数是指在机器学习算法的训练过程中需要设置的参数,它们不同于模型本身的参数(例如权重和偏置),是需要在训练之前预先确定的。超参数在模型训练和性能优化中起着关键作用。

正则化
在这里插入图片描述
在这里插入图片描述

def L_i(x, y, W):   """   unvectorized version. Compute the multiclass svm loss for a single example (x,y)   - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)     with an appended bias dimension in the 3073-rd position (i.e. bias trick)   - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)   - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)   """   delta = 1.0 # see notes about delta later in this section   scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class   correct_class_score = scores[y]   D = W.shape[0] # number of classes, e.g. 10   loss_i = 0.0   for j in range(D): # iterate over all wrong classes     if j == y:       # skip for the true class to only loop over incorrect classes       continue     # accumulate loss for the i-th example     loss_i += max(0, scores[j] - correct_class_score + delta)   return loss_i  def L_i_vectorized(x, y, W):   """   A faster half-vectorized implementation. half-vectorized   refers to the fact that for a single example the implementation contains   no for loops, but there is still one loop over the examples (outside this function)   """   delta = 1.0   scores = W.dot(x)   # compute the margins for all classes in one vector operation   margins = np.maximum(0, scores - scores[y] + delta)   # on y-th position scores[y] - scores[y] canceled and gave delta. We want   # to ignore the y-th position and only consider margin on max wrong class   margins[y] = 0   loss_i = np.sum(margins)   return loss_i  def L(X, y, W):   """   fully-vectorized implementation :   - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)   - y is array of integers specifying correct class (e.g. 50,000-D array)   - W are weights (e.g. 10 x 3073)   """   # evaluate loss over all examples in X without using any for loops   # left as exercise to reader in the assignment 

相关内容

热门资讯

五分钟了解!天天贵阳麻将软挂神... 您好:天天贵阳麻将软挂神器这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户...
透视科技!wpk透视挂是真的(... 透视科技!wpk透视挂是真的(透视)底牌透视挂辅助软件(可靠开挂辅助必胜教程)-哔哩哔哩;wpk透视...
透视脚本!智星德州有脚本,78... 透视脚本!智星德州有脚本,789大菠萝如何手气顺,细节揭秘(发现有挂)-哔哩哔哩暗藏猫腻,小编详细说...
黑科技辅助!wepoke显示游... 黑科技辅助!wepoke显示游作弊(智能ai辅助插件安装)软件透明挂黑科技(先前存在有挂)-哔哩哔哩...
五分钟了解!多乐跑得快自创房间... 五分钟了解!多乐跑得快自创房间可以拿好牌(辅助挂)往昔真的有挂(专业辅助攻略教程)-哔哩哔哩;五分钟...
透视有挂!德州机器人代打脚本(... 透视有挂!德州机器人代打脚本(透视)底牌透视挂辅助系统(可靠开挂辅助解密教程)-哔哩哔哩;1、透视有...
透视透视!wepoker新号好... 透视透视!wepoker新号好一点,中致上饶辅助,科技教程(果真有挂)-哔哩哔哩1、全新机制【中致上...
黑科技辅助!德州之星手游辅助(... 《黑科技辅助!德州之星手游辅助(智能ai辅助工具)软件透明挂黑科技(竟然有挂)-哔哩哔哩》 德州之星...
第五分钟了解!欢乐龙城3有挂(... 第五分钟了解!欢乐龙城3有挂(辅助挂)确实有挂(专业辅助AI教程)-哔哩哔哩;超受欢迎的欢乐龙城3有...
黑科技辅助!微扑克辅助手机(智... 【福星临门,好运相随】;黑科技辅助!微扑克辅助手机(智能ai辅助插件安装)软件透明挂黑科技(真是真的...