mmyolo、mmsegmentation等提供了数据集分析工具
数据采用coco格式数据
根据配置文件分析全部数据类型或指定类型的Bbox_num、bbox_wh\bbox_wh_ratio、bbox_area
示例数据采用的是讯飞X光安检物品监测数据集,通过结果可以看出Knife、wrench、powerbank等小物品的数据相对较少,Knife类别最少,存在显著的类别不平衡问题。
测试模型性能:推理速度
!python /root/mmyolo/tools/analysis_tools/browse_coco_json.py --data-root /root/autodl-tmp/train --img-dir /root/autodl-tmp/train/images/ --ann-file /root/autodl-tmp/train/annotations/instances_train2014.json
将数据集与标签进行可视化
-将数据可视化保存输出到文件夹下,包含两种模式
-m:‘original’, ‘transformed’, ‘pipeline’
‘original’:金输出原始图像
‘transformed’:输出变换后的图像
‘pipeline’:输出数据增流各个阶段的图像
通过分析数据,优化先验anchor的设置,仅支持YOLOAnchorGenerator
“”"Optimize anchor settings on a specific dataset.
This script provides three methods to optimize YOLO anchors including k-means
anchor cluster, differential evolution and v5-k-means. You can use--algorithm k-means
, --algorithm differential_evolution
and--algorithm v5-k-means
to switch those methods.
Example:
Use k-means anchor cluster:: python tools/analysis_tools/optimize_anchors.py ${CONFIG} \ --algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \ --out-dir ${OUT_DIR} Use differential evolution to optimize anchors:: python tools/analysis_tools/optimize_anchors.py ${CONFIG} \ --algorithm differential_evolution \ --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \ --out-dir ${OUT_DIR} Use v5-k-means to optimize anchors:: python tools/analysis_tools/optimize_anchors.py ${CONFIG} \ --algorithm v5-k-means \ --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \ --prior_match_thr ${PRIOR_MATCH_THR} \ --out-dir ${OUT_DIR}
该工具默认调用gpu进行数据计算,算法名称还有个小bug,需要注意一下
if args.algorithm == 'k-means': optimizer = YOLOKMeansAnchorOptimizer( dataset=dataset, input_shape=input_shape, device=args.device, num_anchor_per_level=num_anchor_per_level, iters=args.iters, logger=logger, out_dir=args.out_dir) elif args.algorithm == 'DE': optimizer = YOLODEAnchorOptimizer( dataset=dataset, input_shape=input_shape, device=args.device, num_anchor_per_level=num_anchor_per_level, iters=args.iters, logger=logger, out_dir=args.out_dir) elif args.algorithm == 'v5-k-means': optimizer = YOLOV5KMeansAnchorOptimizer( dataset=dataset, input_shape=input_shape, device=args.device, num_anchor_per_level=num_anchor_per_level, iters=args.iters, prior_match_thr=args.prior_match_thr, mutation_args=args.mutation_args, augment_args=args.augment_args, logger=logger, out_dir=args.out_dir) else: raise NotImplementedError( f'Only support k-means and differential_evolution, ' f'but get {args.algorithm}')