# 10.4 集成学习及随机森林 # 导入car数据集 car <- read.table("data/car.data",sep = ",") # 对变量重命名 colnames(car) <- c("buy","main","doors","capacity", "lug_boot","safety","accept") # 随机选取75%的数据作为训练集建立模型,25%的数据作为测试集用来验证模型 library(caret) library(ggplot2) library(lattice) # 构建训练集的下标集 ind <- createDataPartition(car$accept,times=1,p=0.75,list=FALSE) # 构建测试集数据好训练集数据 carTR <- car[ind,] carTE <- car[-ind,] carTR<- within(carTR,accept <- factor(accept,levels=c("unacc","acc","good","vgood"))) carTE<- within(carTE,accept <- factor(accept,levels=c("unacc","acc","good","vgood"))) # 使用adabag包中的bagging函数实现bagging算法 #install.packages("adabag") library(adabag) bagging.model <- bagging(accept~.,data=carTR) # 使用adabag包中的boosting函数实现boosting算法 boosting.model <- boosting(accept~.,data=carTR) # 使用randomForest包中的randomForest函数实现随机森林算法 #install.packages("randomForest") library(randomForest) randomForest.model <- randomForest(accept~.,data=carTR,ntree=500,mtry=3) # 预测结果,并构建混淆矩阵,查看准确率 # 构建result,存放预测结果 result <- data.frame(arithmetic=c("bagging","boosting","随机森林"), errTR=rep(0,3),errTE=rep(0,3)) for(i in 1:3){ # 预测结果 carTR_predict <- predict(switch(i,bagging.model,boosting.model,randomForest.model), newdata=carTR) # 训练集数据 carTE_predict <- predict(switch(i,bagging.model,boosting.model,randomForest.model), newdata=carTE) # 测试集数据 # 构建混淆矩阵 tableTR <- table(actual=carTR$accept, predict=switch(i,carTR_predict$class,carTR_predict$class,carTR_predict)) tableTE <- table(actual=carTE$accept, predict=switch(i,carTE_predict$class,carTE_predict$class,carTE_predict)) # 计算误差率 result[i,2] <- paste0(round((sum(tableTR)-sum(diag(tableTR)))*100/sum(tableTR), 2),"%") result[i,3] <- paste0(round((sum(tableTE)-sum(diag(tableTE)))*100/sum(tableTE), 2),"%") } # 查看结果 result