视频生成【文章汇总】SVD, Sora, Latte, VideoCrafter12, DiT...
创始人
2024-12-01 13:05:23
0

视频生成【文章汇总】SVD, Sora, Latte, VideoCrafter12, DiT...

    • 数据集
    • 指标
  • 【arXiv 2024】MiraData: A Large-Scale Video Dataset with Long Durations and Structured Captions
  • 【CVPR 2024】VBench : Comprehensive Benchmark Suite for Video Generative Models
  • 【arxiv 2024】T2V-CompBench: A Comprehensive Benchmark for Compositional Text-to-video Generation
  • 【arxiv 2024】Latte: Latent Diffusion Transformer for Video Generation
  • 【arxiv 2024】xxx
  • 【arxiv 2024】xxx
  • 【arxiv 2024】xxx
  • 【arxiv 2024】xxx

数据集

指标

【arXiv 2024】MiraData: A Large-Scale Video Dataset with Long Durations and Structured Captions

Authors: Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu Xiong, Qiang Xu, Ying Shan

Abstract Sora's high-motion intensity and long consistent videos have significantly impacted the field of video generation, attracting unprecedented attention. However, existing publicly available datasets are inadequate for generating Sora-like videos, as they mainly contain short videos with low motion intensity and brief captions. To address these issues, we propose MiraData, a high-quality video dataset that surpasses previous ones in video duration, caption detail, motion strength, and visual quality. We curate MiraData from diverse, manually selected sources and meticulously process the data to obtain semantically consistent clips. GPT-4V is employed to annotate structured captions, providing detailed descriptions from four different perspectives along with a summarized dense caption. To better assess temporal consistency and motion intensity in video generation, we introduce MiraBench, which enhances existing benchmarks by adding 3D consistency and tracking-based motion strength metrics. MiraBench includes 150 evaluation prompts and 17 metrics covering temporal consistency, motion strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To demonstrate the utility and effectiveness of MiraData, we conduct experiments using our DiT-based video generation model, MiraDiT. The experimental results on MiraBench demonstrate the superiority of MiraData, especially in motion strength.

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读,待续】
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

【CVPR 2024】VBench : Comprehensive Benchmark Suite for Video Generative Models

Authors: Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin, Yu Qiao, Ziwei Liu

Abstract Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读】在这里插入图片描述
在这里插入图片描述

【arxiv 2024】T2V-CompBench: A Comprehensive Benchmark for Compositional Text-to-video Generation

Authors: Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, Xihui Liu

Abstract Text-to-video (T2V) generation models have advanced significantly, yet their ability to compose different objects, attributes, actions, and motions into a video remains unexplored. Previous text-to-video benchmarks also neglect this important ability for evaluation. In this work, we conduct the first systematic study on compositional text-to-video generation. We propose T2V-CompBench, the first benchmark tailored for compositional text-to-video generation. T2V-CompBench encompasses diverse aspects of compositionality, including consistent attribute binding, dynamic attribute binding, spatial relationships, motion binding, action binding, object interactions, and generative numeracy. We further carefully design evaluation metrics of MLLM-based metrics, detection-based metrics, and tracking-based metrics, which can better reflect the compositional text-to-video generation quality of seven proposed categories with 700 text prompts. The effectiveness of the proposed metrics is verified by correlation with human evaluations. We also benchmark various text-to-video generative models and conduct in-depth analysis across different models and different compositional categories. We find that compositional text-to-video generation is highly challenging for current models, and we hope that our attempt will shed light on future research in this direction.

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读】
在这里插入图片描述
在这里插入图片描述

【arxiv 2024】Latte: Latent Diffusion Transformer for Video Generation

Authors: Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, Yu Qiao

Abstract We propose a novel Latent Diffusion Transformer, namely Latte, for video generation. Latte first extracts spatio-temporal tokens from input videos and then adopts a series of Transformer blocks to model video distribution in the latent space. In order to model a substantial number of tokens extracted from videos, four efficient variants are introduced from the perspective of decomposing the spatial and temporal dimensions of input videos. To improve the quality of generated videos, we determine the best practices of Latte through rigorous experimental analysis, including video clip patch embedding, model variants, timestep-class information injection, temporal positional embedding, and learning strategies. Our comprehensive evaluation demonstrates that Latte achieves state-of-the-art performance across four standard video generation datasets, i.e., FaceForensics, SkyTimelapse, UCF101, and Taichi-HD. In addition, we extend Latte to text-to-video generation (T2V) task, where Latte achieves comparable results compared to recent T2V models. We strongly believe that Latte provides valuable insights for future research on incorporating Transformers into diffusion models for video generation.

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读,待续】

【arxiv 2024】xxx

Authors:

Abstract

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读,待续】

【arxiv 2024】xxx

Authors:

Abstract

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读,待续】

【arxiv 2024】xxx

Authors:

Abstract

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读,待续】

【arxiv 2024】xxx

Authors:

Abstract

【Paper】 > 【Github_Code】 > 【Project】 > 【中文解读,待续】

相关内容

热门资讯

透视了解!竞技联盟辅助,wep... 透视了解!竞技联盟辅助,wepoker祈福有用吗(透视)起初是真的有挂(玩家教你)1、下载好wepo...
透视代打!约局吧游戏挂,xpo... 透视代打!约局吧游戏挂,xpoker辅助神器,果然是真的有挂(切实教程)约局吧游戏挂辅助器中分为三种...
透视科技!德州局HHpoker... 透视科技!德州局HHpoker透视脚本,hh poker辅助有用吗,德州论坛(有挂教程);1、德州局...
透视新版!wepoker破解版... 透视新版!wepoker破解版内购,hhpoker德州透视挂(透视)往昔是真的有挂(德州教程);1、...
透视辅助!智星德州有脚本吗,a... 透视辅助!智星德州有脚本吗,aa poker辅助包,确实是有挂(安装教程)1、不需要AI权限,帮助你...
透视中牌率!hhpoker怎么... 透视中牌率!hhpoker怎么开透视,hhpoker免费透视脚本,软件教程(有挂教程);1、用户打开...
透视数据!德州透视插件,hhp... 透视数据!德州透视插件,hhpoker是真的吗(透视)固有真的是有挂(切实教程)1、构建自己的hhp...
透视辅助!hhpoker作弊实... 透视辅助!hhpoker作弊实战视频,hhpoker哪个俱乐部靠谱,详细教程(有挂规律)1、全新机制...
透视神器!德州辅助工具到底怎么... 透视神器!德州辅助工具到底怎么样,aa poker透视软件(透视)切实有挂(AI教程)一、德州辅助工...
透视能赢!hhpoker辅助靠... 透视能赢!hhpoker辅助靠谱吗,hhpoker万能辅助器,黑科技教程(有挂规律)1、hhpoke...