揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用
创始人
2024-11-17 01:33:29
0

目录

已知数据集 tips

生成数据集并保存为CSV文件 

数据预览:

导入和预览数据

步骤1:绘制散点图(Scatter Plot)

步骤2:添加回归线(Regression Analysis)

步骤3:分类变量分析(Categorical Variables)

步骤4:箱线图(Box Plot)

步骤5:小提琴图(Violin Plot)

步骤6:绘制热力图(Heatmap)

 ​编辑

总结

1. 生成数据集并保存为CSV文件

2. 导入和预览数据

3. 绘制散点图(Scatter Plot)

4. 添加回归线(Regression Analysis)

5. 分类变量分析(Categorical Variables)

6. 绘制箱线图(Box Plot)

7. 绘制小提琴图(Violin Plot)

8. 绘制热力图(Heatmap)


 

ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

 

专栏:数学建模学习笔记

python相关库的安装:pandas,numpy,matplotlib,statsmodels

总篇:【数学建模】—【新手小白到国奖选手】—【学习路线】

第一卷:Numpy

第二卷:Pandas

第三卷:Matplotlib

在数据科学和数学建模的过程中,数据可视化是非常重要的一环。通过可视化,我们能够更直观地理解数据的分布和关系,从而为后续的分析和建模打下坚实的基础。本篇文章将围绕一个具体的实例,详细讲解如何使用Seaborn库进行数据可视化。我们将使用Seaborn内置的数据集tips,该数据集包含了一些餐馆的小费数据。我们的目标是通过数据可视化,探索影响小费金额的因素,并尝试建立一个数学模型。

已知数据集 tips

tips 数据集包含以下几个主要字段:

  • total_bill: 总账单金额
  • tip: 小费金额
  • sex: 性别
  • smoker: 是否吸烟
  • day: 就餐日期
  • time: 就餐时间(午餐或晚餐)
  • size: 就餐人数

生成数据集并保存为CSV文件 

import pandas as pd import numpy as np  # 设置随机种子 np.random.seed(0)  # 生成数据 n = 1000 total_bill = np.round(np.random.uniform(5, 50, n), 2) tip = np.round(total_bill * np.random.uniform(0.1, 0.3, n), 2) sex = np.random.choice(['Male', 'Female'], n) smoker = np.random.choice(['Yes', 'No'], n) day = np.random.choice(['Thur', 'Fri', 'Sat', 'Sun'], n) time = np.random.choice(['Lunch', 'Dinner'], n) size = np.random.randint(1, 6, n)  # 创建DataFrame tips = pd.DataFrame({     'total_bill': total_bill,     'tip': tip,     'sex': sex,     'smoker': smoker,     'day': day,     'time': time,     'size': size })  # 保存数据集到CSV文件 tips.to_csv('tips.csv', index=False)  # 显示数据集的前几行 print(tips.head()) 

数据预览

total_billtipsexsmokerdaytimesize
29.706.49FemaleNoFriLunch5
37.183.79FemaleYesThurLunch2
32.126.27FemaleNoThurLunch4
29.527.14FemaleNoFriLunch5
24.062.62FemaleYesSunDinner5

导入和预览数据

在生成数据后,我们导入必要的可视化库,并预览数据。

import seaborn as sns import matplotlib.pyplot as plt import pandas as pd  # 读取本地示例数据集 tips = pd.read_csv('tips.csv')  # 显示数据集的前几行 print(tips.head()) 

详解:

  1. 导入必要的库

    • seaborn: 用于数据可视化的主要库。
    • matplotlib.pyplot: Seaborn是基于Matplotlib构建的,所以我们需要同时导入Matplotlib来进行图表的展示。
  2. 读取数据

    • 使用pandas.read_csv函数从CSV文件中读取数据。
  3. 预览数据

    • 使用print(tips.head())函数来显示数据集的前几行,帮助我们快速了解数据的结构和内容。

步骤1:绘制散点图(Scatter Plot)

我们首先绘制一个散点图,展示总账单(total_bill)与小费(tip)之间的关系。

# 绘制散点图 sns.scatterplot(data=tips, x='total_bill', y='tip') plt.title('Scatter plot of Total Bill vs Tip') plt.xlabel('Total Bill') plt.ylabel('Tip') plt.show() 

 

  1. 绘制散点图

    • 使用seaborn.scatterplot函数,其中data参数指定数据集,xy参数分别指定横轴和纵轴的数据字段。
  2. 设置图表标题和标签

    • 使用plt.title设置图表标题。
    • 使用plt.xlabelplt.ylabel分别设置横轴和纵轴的标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

散点图是一种常用的图表类型,用于展示两个变量之间的关系。在这个例子中,使用seaborn.scatterplot函数绘制总账单(total_bill)与小费(tip)之间的散点图。通过散点图,可以直观地看到总账单和小费之间的关系。从图中可以看出,小费随总账单的增加而增加,但这种关系是否是线性的还需要进一步分析。

步骤2:添加回归线(Regression Analysis)

为了更好地了解总账单和小费之间的关系,我们可以使用Seaborn的 lmplot 函数来添加一条回归线。

# 绘制带回归线的散点图 sns.lmplot(data=tips, x='total_bill', y='tip') plt.title('Total Bill vs Tip with Regression Line') plt.xlabel('Total Bill') plt.ylabel('Tip') plt.show() 

 

  1. 绘制带回归线的散点图

    • 使用seaborn.lmplot函数,其中data参数指定数据集,xy参数分别指定横轴和纵轴的数据字段。
    • lmplot函数不仅绘制散点图,还会自动添加一条回归线,用于展示两个变量之间的线性关系。
  2. 设置图表标题和标签

    • 同样使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

回归分析是一种统计方法,用于研究两个变量之间的关系。在这个例子中,使用Seaborn的lmplot函数来绘制带有回归线的散点图。通过添加回归线,可以更清楚地看到总账单和小费之间的线性关系。这条回归线表示小费随总账单增加的趋势,图中还会显示回归线的置信区间。

步骤3:分类变量分析(Categorical Variables)

接下来,我们分析性别、吸烟情况等分类变量对小费的影响。

# 使用hue参数根据性别绘制不同颜色的散点图 sns.scatterplot(data=tips, x='total_bill', y='tip', hue='sex') plt.title('Total Bill vs Tip by Gender') plt.xlabel('Total Bill') plt.ylabel('Tip') plt.show() 

 

  1. 根据分类变量绘制散点图

    • 使用seaborn.scatterplot函数,通过hue参数指定分类变量(例如性别),从而根据不同类别绘制不同颜色的点。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

分类变量(如性别、吸烟情况等)在数据分析中非常重要,因为它们能够提供关于数据分布的更多信息。在这个例子中,使用seaborn.scatterplot函数,根据性别绘制不同颜色的散点图。通过这种方式,可以看到性别对总账单和小费关系的影响。例如,可以观察到男性和女性在小费上的差异。

步骤4:箱线图(Box Plot)

箱线图可以帮助我们了解数据的分布及其异常值。

# 绘制箱线图展示不同日期的总账单分布 sns.boxplot(data=tips, x='day', y='total_bill') plt.title('Box plot of Total Bill by Day') plt.xlabel('Day') plt.ylabel('Total Bill') plt.show() 

 

  1. 绘制箱线图

    • 使用seaborn.boxplot函数,其中data参数指定数据集,xy参数分别指定分类变量和连续变量。
    • 箱线图可以展示数据的中位数、四分位数及其异常值。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

箱线图是一种统计图表,用于展示数据分布的五个统计量:最小值、第一四分位数、中位数、第三四分位数和最大值。箱线图还可以展示异常值。在这个例子中,使用seaborn.boxplot函数绘制不同日期(day)的总账单(total_bill)分布。通过箱线图,可以看到不同日期的总账单分布情况,并识别出哪些数据点是异常值。例如,可以观察到在某些日期,总账单的分布范围较广,而在另一些日期,分布范围较窄。

步骤5:小提琴图(Violin Plot)

小提琴图结合了箱线图和核密度图,可以提供关于数据分布的更多信息。

# 绘制小提琴图展示不同日期的小费分布 sns.violinplot(data=tips, x='day', y='tip') plt.title('Violin plot of Tip by Day') plt.xlabel('Day') plt.ylabel('Tip') plt.show() 

  1. 绘制小提琴图

    • 使用seaborn.violinplot函数,其中data参数指定数据集,xy参数分别指定分类变量和连续变量。
    • 小提琴图展示了数据分布的核密度估计,并结合了箱线图的元素。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

小提琴图结合了箱线图和核密度图的优点,可以更详细地展示数据分布的特征。在这个例子中,使用seaborn.violinplot函数绘制不同日期(day)的小费(tip)分布。通过小提琴图,可以看到不同日期的小费分布情况,并识别出数据分布的密度和异常值。例如,可以观察到在某些日期,小费的分布较为集中,而在另一些日期,分布较为分散。

步骤6:绘制热力图(Heatmap)

热力图适合展示矩阵数据,比如相关矩阵。例如,绘制数据集的相关矩阵:

# 选择数值列 numeric_tips = tips.select_dtypes(include='number')  # 计算相关矩阵并绘制热力图 corr = numeric_tips.corr() plt.figure(figsize=(10, 8)) sns.heatmap(corr, annot=True, cmap='coolwarm', linewidths=0.5) plt.title('Heatmap of Correlation Matrix') plt.show() 

  1. 计算相关矩阵

    • 使用DataFrame.corr()函数计算数据集中数值变量之间的相关系数。
  2. 绘制热力图

    • 使用seaborn.heatmap函数绘制热力图。
    • corr:相关矩阵,作为热力图的数据输入。
    • annot=True:在每个单元格中显示相关系数的数值。
    • cmap='coolwarm':设置热力图的颜色映射,coolwarm颜色映射使得正相关和负相关的数据点能够通过颜色区分开来。
    • linewidths=0.5:设置每个单元格之间的间隔线宽度。
  3. 设置图表大小:使用plt.figure(figsize=(10, 8))设置图表的大小,确保图表清晰可读。

  4. 设置图表标题:使用plt.title设置图表的标题。

  5. 显示图表:使用plt.show()函数来显示热力图。

相关矩阵热力图解释:

  • 对角线:热力图的对角线上的值都是1,因为每个变量与自身的相关系数都是1。
  • 变量之间的相关性:热力图的非对角线单元格显示了不同变量之间的相关系数。颜色的深浅表示相关性强弱,颜色的方向(冷暖)表示正相关或负相关。

通过这些详细的步骤,我们能够全面地分析和可视化餐馆小费数据,深入了解影响小费的各种因素,为进一步的数学建模和决策提供有力的支持。

 

总结

1. 生成数据集并保存为CSV文件

首先,我们生成了一个包含餐馆小费信息的模拟数据集,并将其保存为CSV文件。数据集包含以下字段:total_billtipsexsmokerdaytimesize

2. 导入和预览数据

使用Pandas库读取本地CSV文件,并预览数据集的前几行,以了解数据的结构和内容。

3. 绘制散点图(Scatter Plot)

使用Seaborn的scatterplot函数绘制散点图,展示总账单(total_bill)与小费(tip)之间的关系。

4. 添加回归线(Regression Analysis)

使用Seaborn的lmplot函数在散点图上添加回归线,以更清晰地展示总账单和小费之间的线性关系。

5. 分类变量分析(Categorical Variables)

使用scatterplot函数的hue参数,根据性别绘制不同颜色的散点图,分析性别对总账单和小费关系的影响。

6. 绘制箱线图(Box Plot)

使用Seaborn的boxplot函数绘制箱线图,展示不同日期的总账单分布,帮助识别数据的中位数、四分位数及其异常值。

7. 绘制小提琴图(Violin Plot)

使用Seaborn的violinplot函数绘制小提琴图,结合箱线图和核密度图,提供更多关于数据分布的信息。

8. 绘制热力图(Heatmap)

计算数据集中数值变量之间的相关矩阵,使用Seaborn的heatmap函数绘制热力图,直观地展示各变量之间的相关性。

通过这些步骤,可以全面地分析和可视化餐馆小费数据,深入了解影响小费的各种因素,为进一步的数学建模和决策提供有力的支持。

相关内容

热门资讯

2024版科技(人民棋牌)外挂... 《WePoKe软件透明挂》是一款多人竞技的wpk辅助透视游戏,你将微扑克对手来到同一个战场,为至高无...
新2024版规律(丽水跑得快)... 新2024版规律(丽水跑得快)外挂透明挂辅助攻略(软件透明挂)入微教程(2022已更新)(哔哩哔哩)...
今日百科(聚乐麻将)外挂透明挂... 1、很好的工具软件,可以解锁游戏的ai质量和中牌率,深受大多数游戏玩家的喜爱。2、非常简单,易于操作...
交流学习经验(【WEPOKE】... 交流学习经验(【WEPOKE】)外挂透明挂辅助挂(透明挂)深入教程(2021已更新)(哔哩哔哩);小...
玩家攻略(天天休闲)外挂透明挂... 大家肯定在之前WePoKer或者WPK中玩过玩家攻略(天天休闲)外挂透明挂辅助软件(辅助挂)深入教程...
必备教程(网易棋牌)外挂透明挂... 必备教程(网易棋牌)外挂透明挂辅助器(透明挂软件)条分缕析(2020已更新)(哔哩哔哩);网易棋牌是...
普及知识(天天监利麻将)外挂透... 1、让任何用户在无需AI插件第三方神器的情况下就能够完成在天天监利麻将系统规律下的调试。2、直接的在...
今日公布(金龙麻将)外挂透明挂... 今日公布(金龙麻将)外挂透明挂辅助攻略(有科技)详细教程(2020已更新)(哔哩哔哩)准备好在金龙麻...
每日必看教程(福建天天开心)外... 每日必看教程(福建天天开心)外挂透明挂辅助挂(透视)入微教程(2024已更新)(哔哩哔哩),福建天天...
每日必看教程(内蒙古圈)外挂透... 每日必看教程(内蒙古圈)外挂透明挂辅助脚本(透视)周密教程(2020已更新)(哔哩哔哩)详细攻略(小...