湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,能够更加便捷地满足各种数据处理分析的需求。Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。我们将通过一系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 Hudi、Paimon、Iceberg、OSS、Delta Lake、Kudu、BigQuery 等。
本文将继续为大家介绍 Lakehouse 使用手册(三)之 Apache Doris + Apache Iceberg 快速搭建指南。
Apache Iceberg 是一种开源、高性能、高可靠的数据湖表格式,可实现超大规模数据的分析与管理。它支持 Apache Doris 在内的多种主流查询引擎,兼容 HDFS 以及各种对象云存储,具备 ACID、Schema 演进、高级过滤、隐藏分区和分区布局演进等特性,可确保高性能查询以及数据的可靠性及一致性,其时间旅行和版本回滚功能也为数据管理带来较高的灵活性。
Apache Doris 对 Iceberg 多项核心特性提供了原生支持:
支持 Hive Metastore、Hadoop、REST、Glue、Google Dataproc Metastore、DLF 等多种 Iceberg Catalog 类型。
原生支持 Iceberg V1/V2 表格式,以及 Position Delete、Equality Delete 文件的读取。
支持通过表函数查询 Iceberg 表快照历史。
支持时间旅行(Time Travel)功能。
原生支持 Iceberg 表引擎。可以通过 Apache Doris 直接创建、管理以及将数据写入到 Iceberg 表。支持完善的分区 Transform 函数,从而提供隐藏分区和分区布局演进等能力。
用户可以基于 Apache Doris + Apache Iceberg快速构建高效的湖仓一体解决方案,以灵活应对实时数据分析与处理的各种需求:
通过 Doris 高性能查询引擎对 Iceberg 表数据和其他数据源进行关联数据分析,构建统一的联邦数据分析平台。
通过 Doris 直接管理和构建 Iceberg 表,在 Doris 中完成对数据的清洗、加工并写入到 Iceberg 表,构建统一的湖仓数据处理平台。
通过 Iceberg 表引擎,将 Doris 数据共享给其他上下游系统做进一步处理,构建统一的开放数据存储平台。
未来 ,Apache Iceberg 将作为 Apache Doris 的原生表引擎之一,提供更加完善的湖格式数据的分析、管理功能。 Apache Doris 也将逐步支持包括 Update/Delete/Merge、写回时排序、增量数据读取、元数据管理等 Apache Iceberg 更多高级特性,共同构建统一、高性能、实时的湖仓平台。
接下来,为读者讲解如何在 Docker 环境下快速搭建 Apache Doris + Apache Iceberg 测试 & 演示环境,并展示各功能的使用操作。
本文涉及脚本&代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/iceberg_and_paimon
本文示例采用 Docker Compose 部署,组件及版本号如下:
1. 启动所有组件
bash ./start_all.sh
2. 启动后,可以使用如下脚本,登陆 Doris 命令行:
bash ./start_doris_client.sh
1. 首先登陆 Doris 命令行后,Doris 集群中已经创建了名为 Iceberg 的 Catalog(可通过 SHOW CATALOGS
/ SHOW CREATE CATALOG iceberg
查看)。以下为该 Catalog 的创建语句:
-- 已创建,无需执行 CREATE CATALOG `iceberg` PROPERTIES ( "type" = "iceberg", "iceberg.catalog.type" = "rest", "warehouse" = "s3://warehouse/", "uri" = "http://rest:8181", "s3.access_key" = "admin", "s3.secret_key" = "password", "s3.endpoint" = "http://minio:9000" );
2. 在 Iceberg Catalog 创建数据库和 Iceberg 表:
mysql> SWITCH iceberg; Query OK, 0 rows affected (0.00 sec) mysql> CREATE DATABASE nyc; Query OK, 0 rows affected (0.12 sec) mysql> CREATE TABLE iceberg.nyc.taxis ( vendor_id BIGINT, trip_id BIGINT, trip_distance FLOAT, fare_amount DOUBLE, store_and_fwd_flag STRING, ts DATETIME ) PARTITION BY LIST (vendor_id, DAY(ts)) () PROPERTIES ( "compression-codec" = "zstd", "write-format" = "parquet" ); Query OK, 0 rows affected (0.15 sec)
1. 向 Iceberg 表中插入数据。
mysql> INSERT INTO iceberg.nyc.taxis VALUES (1, 1000371, 1.8, 15.32, 'N', '2024-01-01 9:15:23'), (2, 1000372, 2.5, 22.15, 'N', '2024-01-02 12:10:11'), (2, 1000373, 0.9, 9.01, 'N', '2024-01-01 3:25:15'), (1, 1000374, 8.4, 42.13, 'Y', '2024-01-03 7:12:33'); Query OK, 4 rows affected (1.61 sec) {'status':'COMMITTED', 'txnId':'10085'}
2. 通过 CREATE TABLE AS SELECT
来创建一张 Iceberg 表。
mysql> CREATE TABLE iceberg.nyc.taxis2 AS SELECT * FROM iceberg.nyc.taxis; Query OK, 6 rows affected (0.25 sec) {'status':'COMMITTED', 'txnId':'10088'}
mysql> SELECT * FROM iceberg.nyc.taxis; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 4 rows in set (0.37 sec)
mysql> SELECT * FROM iceberg.nyc.taxis2; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 4 rows in set (0.35 sec)
分区剪裁
mysql> SELECT * FROM iceberg.nyc.taxis where vendor_id = 2 and ts >= '2024-01-01' and ts < '2024-01-02'; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 1 row in set (0.06 sec) mysql> EXPLAIN VERBOSE SELECT * FROM iceberg.nyc.taxis where vendor_id = 2 and ts >= '2024-01-01' and ts < '2024-01-02'; .... | 0:VICEBERG_SCAN_NODE(71) | table: taxis | predicates: (ts[#5] < '2024-01-02 00:00:00'), (vendor_id[#0] = 2), (ts[#5] >= '2024-01-01 00:00:00') | inputSplitNum=1, totalFileSize=3539, scanRanges=1 | partition=1/0 | backends: | 10002 | s3://warehouse/wh/nyc/taxis/data/vendor_id=2/ts_day=2024-01-01/40e6ca404efa4a44-b888f23546d3a69c_5708e229-2f3d-4b68-a66b-44298a9d9815-0.zstd.parquet start: 0 length: 3539 | cardinality=6, numNodes=1 | pushdown agg=NONE | icebergPredicatePushdown= | ref(name="ts") < 1704153600000000 | ref(name="vendor_id") == 2 | ref(name="ts") >= 1704067200000000 ....
通过EXPLAIN VERBOSE
语句的结果可知,vendor_id = 2 and ts >= '2024-01-01' and ts < '2024-01-02'
谓词条件,最终只命中一个分区(partition=1/0
)。
同时也可知,因为在建表时指定了分区 Transform 函数 DAY(ts)
,原始数据中的的值 2024-01-01 03:25:15.000000
会被转换成文件目录中的分区信息ts_day=2024-01-01
。
1. 再次插入几行数据。
INSERT INTO iceberg.nyc.taxis VALUES (1, 1000375, 8.8, 55.55, 'Y', '2024-01-01 8:10:22'), (3, 1000376, 7.4, 32.35, 'N', '2024-01-02 1:14:45'); Query OK, 2 rows affected (0.17 sec) {'status':'COMMITTED', 'txnId':'10086'} mysql> SELECT * FROM iceberg.nyc.taxis; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 3 | 1000376 | 7.4 | 32.35 | N | 2024-01-02 01:14:45.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | | 1 | 1000375 | 8.8 | 55.55 | Y | 2024-01-01 08:10:22.000000 | | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 6 rows in set (0.11 sec)
2. 使用 iceberg_meta
表函数查询表的快照信息
mysql> select * from iceberg_meta("table" = "iceberg.nyc.taxis", "query_type" = "snapshots"); +---------------------+---------------------+---------------------+-----------+-----------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | committed_at | snapshot_id | parent_id | operation | manifest_list | summary | +---------------------+---------------------+---------------------+-----------+-----------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | 2024-07-29 03:38:22 | 8483933166442433486 | -1 | append | s3://warehouse/wh/nyc/taxis/metadata/snap-8483933166442433486-1-5f7b7736-8022-4ba1-9db2-51ae7553be4d.avro | {"added-data-files":"4","added-records":"4","added-files-size":"14156","changed-partition-count":"4","total-records":"4","total-files-size":"14156","total-data-files":"4","total-delete-files":"0","total-position-deletes":"0","total-equality-deletes":"0"} | | 2024-07-29 03:40:23 | 4726331391239920914 | 8483933166442433486 | append | s3://warehouse/wh/nyc/taxis/metadata/snap-4726331391239920914-1-6aa3d142-6c9c-4553-9c04-08ad4d49a4ea.avro | {"added-data-files":"2","added-records":"2","added-files-size":"7078","changed-partition-count":"2","total-records":"6","total-files-size":"21234","total-data-files":"6","total-delete-files":"0","total-position-deletes":"0","total-equality-deletes":"0"} | +---------------------+---------------------+---------------------+-----------+-----------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 2 rows in set (0.07 sec)
3. 使用 FOR VERSION AS OF
语句查询指定快照
mysql> SELECT * FROM iceberg.nyc.taxis FOR VERSION AS OF 8483933166442433486; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 4 rows in set (0.05 sec) mysql> SELECT * FROM iceberg.nyc.taxis FOR VERSION AS OF 4726331391239920914; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 1 | 1000375 | 8.8 | 55.55 | Y | 2024-01-01 08:10:22.000000 | | 3 | 1000376 | 7.4 | 32.35 | N | 2024-01-02 01:14:45.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 6 rows in set (0.04 sec)
4. 使用 FOR TIME AS OF
语句查询指定快照
mysql> SELECT * FROM iceberg.nyc.taxis FOR TIME AS OF "2024-07-29 03:38:23"; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 4 rows in set (0.04 sec) mysql> SELECT * FROM iceberg.nyc.taxis FOR TIME AS OF "2024-07-29 03:40:22"; +-----------+---------+---------------+-------------+--------------------+----------------------------+ | vendor_id | trip_id | trip_distance | fare_amount | store_and_fwd_flag | ts | +-----------+---------+---------------+-------------+--------------------+----------------------------+ | 2 | 1000373 | 0.9 | 9.01 | N | 2024-01-01 03:25:15.000000 | | 1 | 1000374 | 8.4 | 42.13 | Y | 2024-01-03 07:12:33.000000 | | 2 | 1000372 | 2.5 | 22.15 | N | 2024-01-02 12:10:11.000000 | | 1 | 1000371 | 1.8 | 15.32 | N | 2024-01-01 09:15:23.000000 | +-----------+---------+---------------+-------------+--------------------+----------------------------+ 4 rows in set (0.05 sec)
以上是基于 Apache Doris 与 Apache Iceberg 快速搭建测试 / 演示环境的详细指南,后续我们还将陆续推出 Apache Doris 与各类主流数据湖格式及存储系统构建湖仓一体架构的系列指南,欢迎持续关注。