微调llama 3 — PEFT微调和全量微调
创始人
2024-11-15 22:10:32
0

1. llama 3 微调基础

1.1 llama 3 简介

官方blog
llama 3 目前有两个版本:8B版和70B版。8B版本拥有8.03B参数,其尺寸较小,可以在消费者硬件上本地运行。

  • meta-llama/Meta-Llama-3-8B
  • meta-llama/Meta-Llama-3-70B
  • 超过400B个参数的第三个版本目前仍在训练中……

Llama 3与Llama 2具有相同的架构,但词汇表要大得多,包含128k entries,而Llama 2只有32k entries,根据Meta的说法,词汇表的扩展显著提高了模型表现。Llama 3的预训练数据包含5%的高质量非英语数据。注意:Meta在model card中仍然提到Llama 3更适合用于英语任务。

另一方面,词汇表的扩展意味着token embeddings需要更多的数据才能被训练的更准确。Meta在15T tokens上训练Llama 3。相比之下,Llama 2只在2T tokens上训练,Google Gemma在6T tokens训练,这在当时似乎已经很多了。

模型的性能表现如下图所示:
在这里插入图片描述

1.2 llama 3 8b Fully Fine-tuning内存占用分析

Fully Fine-tuning an LLM需要更新其所有参数,这种微调需要大量的内存。

  • 模型需要被完全加载到 GPU 内存中
  • 此外,通常用于微调 LLMs 的优化器 AdamW 会为模型中的每个参数创建并存储 2 个参数在 GPU 内存中
  • 并且我们还需要存储在微调过程中创建的张量,即激活值,以便在反向传播过程中用于更新模型参数的梯度。

对Llama 3 8B进行微调,例如,批量大小为8,序列长度为512,将消耗128.87GB的显存。注意:这个内存消耗是一个估计值,没有考虑任何的优化,比如梯度检查点和张量并行。

modelloading the modeloptimizer statesactivationstotal
llama 3 8b14.96GB59.83GB54.08GB128.87GB

(估算大型语言模型(LLM)内存消耗的计算方法)

幸运的是,我们可以很容易地减少这三种参数的内存消耗:

  • Optimizer states:默认情况下,AdamW 的参数为 float32,每项占用 4 字节。AdamW-8bit 是另一种不错的选择,它将参数量化为 8 位,即减少了内存消耗从 59.8 GB 到 15 GB。如果使用的框架不复制模型参数,内存消耗会大大减少。
  • Model:我们可以将模型量化为4位。它将内存消耗分成近4份,即从15 GB到4 GB。在实践中,为了保持其性能,并不是所有的LLM模块都会被量化。
  • Activations:我们需要存储激活来计算梯度。然而,使用gradient checkpointing,我们可以在反向传播过程中动态地重新计算激活值,而不是在整个训练过程中都存储这些激活值。它大大减少了激活的内存消耗,从54GB减少到10 GB。

在应用了所有这些优化措施之后,微调过程需要29GB的内存。虽然这仍然太多,但至少现在可以使用两个24GB的GPU来对模型进行微调了。

1.3 llama 3 8b PEFT Fine-tuning内存占用分析

使用PEFT方法,如LoRA,我们可以在模型顶部微调一个适配器,不需要完全重新训练模型。为了进一步降低内存消耗。

  1. 使用LoRA,需要一个带有24 GB RAM的GPU来微调Llama 3;
  2. 使用QLoRA,只需要一个带有16 GB RAM的GPU。

2. PEFT方法微调llama 3

1、QLoRA 是量化的 LoRA 与 LLMs 的结合。要使用这种方法对 Llama 3 8B 进行微调,我们需要安装

pip install --upgrade bitsandbytes transformers peft accelerate datasets trl 

2、然后导入需要的pkgs

import torch, os from datasets import load_dataset from peft import LoraConfig, prepare_model_for_kbit_training from transformers import (     AutoModelForCausalLM,     AutoTokenizer,     BitsAndBytesConfig,     TrainingArguments, ) from trl import SFTTrainer 

3、如果你拥有较新的GPU,就可以使用bfloat16数据类型以获得更好的训练稳定性,并使用FlashAttention来减少处理长序列时的内存消耗。下面的代码会自动检测GPU是否兼容bfloat16FlashAttention

#use bf16 and FlashAttention if supported if torch.cuda.is_bf16_supported():   os.system('pip install flash_attn')   compute_dtype = torch.bfloat16   attn_implementation = 'flash_attention_2' else:   compute_dtype = torch.float16   attn_implementation = 'sdpa' 

4、然后,我们需要初始化并配置Tokenizer。通常,LLMs在预训练时不包含pad_token。然而,在微调过程中,由于我们的训练示例长度不相同,我们需要将其填充到batch中。我们可以创建并添加一个pad_token到词汇表中,但更简单的选择是将eos_token指定为pad_token。

model_name = "meta-llama/Meta-Llama-3-8B" #Tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, add_eos_token=True, use_fast=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id =  tokenizer.eos_token_id tokenizer.padding_side = 'left' 

注意,我们使用的是左边填充。如果想使用flash_attention,右填充是不兼容的。

5、至于微调数据集,可以选择了 timdettmers/openassistant-guanaco,因为这个数据集足够小。

6、然后,我们创建bnb_config并加载模型:

bnb_config = BitsAndBytesConfig(         load_in_4bit=True,         bnb_4bit_quant_type="nf4",         bnb_4bit_compute_dtype=compute_dtype,         bnb_4bit_use_double_quant=True, ) model = AutoModelForCausalLM.from_pretrained(           model_name, quantization_config=bnb_config, device_map={"": 0}, attn_implementation=attn_implementation ) 

7、bnb_config定义了在4位精度下加载模型,并对量化常数进行量化(即双重量化)。在前向传递过程中,如果你的GPU支持bfloat16数据类型,则将创建bfloat16张量。请注意:如果你的GPU不支持bfloat16,则笔记本将使用float16。然而,这可能会导致训练不稳定。如果你发现训练损失降至0或NaN,请将compute_dtype更改为torch.float32。

8、为了减少激活的内存消耗,我们还需要启用梯度检查点,这是通过

model = prepare_model_for_kbit_training(model) 

9、对于 LoRA 的配置,可以使用:

peft_config = LoraConfig(         lora_alpha=16,         lora_dropout=0.05,         r=16,         bias="none",         task_type="CAUSAL_LM",         target_modules= ['k_proj', 'q_proj', 'v_proj', 'o_proj', "gate_proj", "down_proj", "up_proj"] ) 

可以增加rank来获得更好的结果。增加rank也会增加内存消耗,因为rank增大,适配器的参数也会增加。

10、接下来,定义训练参数和超参数:

training_arguments = TrainingArguments(         output_dir="./Llama3_8b_QLoRA",         evaluation_strategy="steps",         do_eval=True,         optim="paged_adamw_8bit",         per_device_train_batch_size=8,         gradient_accumulation_steps=4,         per_device_eval_batch_size=8,         log_level="debug",         save_strategy="epoch",         logging_steps=100,         learning_rate=1e-4,         fp16 = not torch.cuda.is_bf16_supported(),         bf16 = torch.cuda.is_bf16_supported(),         eval_steps=100,         num_train_epochs=3,         warmup_ratio=0.1,         lr_scheduler_type="linear", ) 

11、使用"paged_adamw_8bit",会在需要时将一些优化器状态存储到CPU RAM中,以进一步减少GPU内存消耗。

补充:QLoRA其实是核心就是在LoRA的技术加上深度的量化过程。核心优化思想包括以下三点:

  • 4bit NoramlFloat Quantization:一种新的数据类型,只用4字节表征参数并且保证整个模型的精度损失极小.(和我们之前的Int8,int4量化方式不同, 原理这篇先不展开了)
  • Double Quantization:对第一次量化后的那些常量再进行一次量化,减少存储空间。
  • Paged optimizers:使用NVIDIA统一内存功能,该功能在CPU和GPU之间进行自动page对page传输,以便在GPU偶尔OOM的情况下进行。可以从现象上理解成出现训练过程中偶发OOM时能够自动处理,保证训练正常训练下去。

对于批量大小,随机选择了一个批量大小为32(每个设备的批量大小为8,梯度累积步骤为4(8x4=32)的配置)。该配置消耗了16.6 GB的GPU内存。如果你只有16 GB的GPU,请将每个设备的批量大小减少到4。

12、最后,开始微调时,运行以下命令:

trainer = SFTTrainer(         model=model,         train_dataset=ds['train'],         eval_dataset=ds['test'],         peft_config=peft_config,         dataset_text_field="text",         max_seq_length=512,         tokenizer=tokenizer,         args=training_arguments, )  trainer.train() 

13、使用Google Colab的L4实例完成这3个epoch大约需要10个小时。

3. 将微调后的adapter集成到Llama 3中

为了避免每次使用时都加载adapter,你可以将其合并到 Llama 3 中。当适配器已经使用 QLoRA 进行微调时,必须小心进行合并,以保持adapter的大部分准确性。我们必须遵循以下步骤:

  1. 加载并量化Llama 3
  2. Dequantize Llama 3 to the compute dtype used during QLoRA fine-tuning
  3. Merge the adapter into the dequantized model
  4. Save the resulting model
    最后得到一个没有量化的模型。我们不能像微调那样用bitsandbytes量化它,否则会严重降低模型的性能。使用AWQ或GPTQ来代替即可。

4. 使用AWQ对llama 3进行4位量化

AWQ是一种量化方案,它保留了模型的重要权重。AWQ很准确,也受到高效的推理核的支持。首先需要安装AutoAWQ:

pip install autoawq 

然后,用几行代码执行量化,例如,要量化前一节合并后得到的模型:

from awq import AutoAWQForCausalLM from transformers import AutoTokenizer  tokenizer_path = "meta-llama/Meta-Llama-3-8B" model_path = './dqz_merge/' quant_path = 'llama-3-oasstguanaco3e-awq-4bit' quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }  # Load model and tokenizer model = AutoAWQForCausalLM.from_pretrained(model_path, safetensors=True) tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_fast=True)  # Quantize model.quantize(tokenizer, quant_config=quant_config)  # Save quantized model with safetensors model.save_quantized("./"+quant_path, safetensors=True) tokenizer.save_pretrained("./"+quant_path) 

这将把量化模型保存到一个名为“llama-3-oasstguanaco3e-awq-4bit”的目录中。

5. 完全微调模型

QLoRA和LoRA只是微调适配器。如果你真的想微调整个模型,你可以尝试GaLore。GaLore将梯度投影到低秩子空间,以显著减少它们的维数,从而减少它们的内存消耗。虽然GaLore大大降低了优化器状态的内存需求,但你仍然需要48GB的GPU RAM。

CODE

具体的notebook代码可以在github仓库中拿到。

notebook中包含了4个部分:

  1. QLoRA fine-tuning
  2. Merging the fine-tuned adapter into the base model
  3. Quantization the Llama 3 with AWQ
  4. Appendices: LoRA and GaLore fine-tuning

相关内容

热门资讯

VSCode切换默认终端 我的VSCode默认终端为PowerShell,每次新建都会自动打开PowerShel...
【LeetCode】136.只... 1. 题目2. 分析这题考察的是基本的位运算。位运算作为程序员必备的基础知识,没有理由...
企业级-实现Nginx的静态文... 作者:fyupeng 技术专栏:☞ https://github.com...
使用WebSocket实现lo... 场景介绍最近开发一个系统,其中一个模块需要展示实时的执行过程,过程日志可...
企业搭建SD-WAN组网有什么... 企业选择SD-WAN进行网络组建的主要原因在于其灵活性和高效性,这对于现代数字化环境中...
SpinalHDL之仿真(三) 本文作为SpinalHDL学习笔记第三十一篇,介绍SpinalHDL仿真过程中访问信号相关内容。目录...
后端跨域配置(用于支持前端地址... @Configuration class CrosConfig implements Web...
初创小程序公司怎么选服务器合作... 初创小程序公司怎么选服务器合作商?在移动互联网的浪潮中,小程序以其轻量、...
(~_~) 一、用不同url头利用python访问一个网站,并把返回的东西保存为 requests...