Variational Mode Decomposition (VMD) 详解与应用
创始人
2024-11-15 11:39:50
0

Variational Mode Decomposition (VMD) 的详细介绍

VMD 是一种信号分解方法,旨在将复杂信号分解为若干个具有不同频率成分的模态。它的基本思想是通过变分优化的方式,得到一组模态信号,这些模态信号在频域上彼此分离。

1. 问题定义

假设我们有一个观测信号 x ( t ) x(t) x(t),VMD 的目标是将其分解成 K K K 个模态信号 u k ( t ) u_k(t) uk​(t) ( k = 1 , 2 , . . . , K ) (k = 1, 2, ..., K) (k=1,2,...,K),每个模态信号具有不同的中心频率 ω k \omega_k ωk​​。此外,我们希望这些模态信号满足以下两个条件:

  1. 模态信号的频谱分布是集中在某个频段的
  2. 模态信号之间相互正交,即它们的频谱在频域上有足够的分离度。

在这里插入图片描述

3. 优化过程
  1. 初始化:选择初始模态信号 u k ( t ) u_k(t) uk​(t) 和频率 ω k \omega_k ωk​​。可以使用随机初始化方法。

  2. 迭代优化

    • 更新模态信号:在固定中心频率的情况下,更新每个模态信号 u k ( t ) u_k(t) uk​(t) 使得信号重建误差最小,同时保持模态信号的平滑性。
    • 更新中心频率:在固定模态信号的情况下,更新每个模态的中心频率 ω k \omega_k ωk​​ 使得每个模态信号的频谱分布集中在预定的频段。
  3. 收敛判断:重复迭代直到目标函数收敛或达到预设的精度容限 tol \text{tol} tol。

4. 数学优化

VMD 使用了拉格朗日乘子法来处理约束条件。具体来说,VMD 将目标函数转换为一个带有约束的拉格朗日函数,并通过变分法来优化。优化过程中,模态信号的频谱分布在频域上被设计为具有最大分离度,从而减少模态之间的重叠。

降噪实现

接下来是如何在实际应用中使用 VMD 进行降噪的步骤。我们将以一个包含噪声的信号为例,通过 VMD 分解并选择主要模态信号来去除噪声。

import numpy as np import matplotlib.pyplot as plt from vmdpy import VMD  # 创建一个示例信号 fs = 1000  # 采样频率 t = np.linspace(0, 1, fs, endpoint=False)  # 时间向量 # 原始信号(正弦波)加上高频噪声 signal = np.sin(2 * np.pi * 50 * t) + 0.5 * np.sin(2 * np.pi * 120 * t) + 0.3 * np.random.normal(size=fs)  # VMD分解参数 alpha = 2000  # 平滑性约束 tau = 0.  # 时间步长 K = 3  # 模态数量 DC = 0  # 是否包含直流分量 init = 1  # 初始化方法 tol = 1e-6  # 误差容限  # 使用VMD进行分解 u, _, _ = VMD(signal, alpha, tau, K, DC, init, tol)  # 选择需要的模态信号,通常是前几个模态(去除噪声) # 在此示例中,我们选择前两个模态 selected_modes = u[:2]  # 重建信号 denoised_signal = np.sum(selected_modes, axis=0)  # 绘制结果 plt.figure(figsize=(12, 8))  plt.subplot(2, 1, 1) plt.plot(t, signal, label='Noisy Signal') plt.plot(t, denoised_signal, label='Denoised Signal') plt.legend()  plt.subplot(2, 1, 2) for i, mode in enumerate(u):     plt.plot(t, mode, label=f'Mode {i+1}') plt.title('Decomposed Modes') plt.legend()  plt.tight_layout() plt.show() 

结果展示

参数解释与调整

  1. alpha (平滑性约束)

    • 作用:控制模态的平滑性。较大的 alpha 值会使模态更加平滑。
    • 调整建议:从 10002000 开始尝试。如果模态过于粗糙或过于光滑,可以相应调整 alpha
  2. tau (时间步长)

    • 作用:控制优化的步长,通常设置为 0
    • 调整建议:大多数情况下保持为 0,也可以尝试其他值来观察变化。
  3. K (模态数量)

    • 作用:指定将信号分解成多少个模态。选择过少可能无法有效分离信号和噪声,选择过多可能引入额外噪声。
    • 调整建议:从 210 进行尝试,观察分解效果。
  4. DC (是否包含直流分量)

    • 作用:决定是否包括直流分量,通常设置为 0
    • 调整建议:保持为 0
  5. init (初始化方法)

    • 作用:设置模态初始化的方法,1 表示随机初始化。
    • 调整建议:一般保持为默认值 1,可以尝试不同初始化方法进行比较。
  6. tol (误差容限)

    • 作用:控制算法的收敛精度,较小的值会提高精度,但计算时间增加。
    • 调整建议:通常设置为 1e-6,也可以尝试更小的值以提高精度。

相关内容

热门资讯

大模型检索X一键成片,巴黎奥运... 媒体智能与巴黎奥运的一场邂逅。随着巴黎奥运会开幕式为全世界掀起一场文艺浪潮,塞纳河畔也...
浅谈几个常用OJ的注册方式 众所周知,好的OJ是成功的一半,但是有些英文OJ的注册很让人伤脑筋。Co...
Mybatis(四)特殊SQL... 实体类:数据库:1、模糊查询方案一:不适用#{ }...
软件测试---网络基础、HTT... 一、网络基础(1)Web和网络知识网络基础TCP/IP使用HTTP协议访...
react-native从入门... 显示多种不同类型图片的 React 组件,包括网络图片、静态资源、临时的本地图片、以及...
【Python seleniu... 文章日期:2024.07.25使用工具:Python文章类型࿱...
【C++】模拟实现list 🦄个人主页:修修修也🎏所属专栏:数据结构⚙️操作环境:Visual ...
SpringBoot系列:通过... 文章目录前言一、简介1.1 操作日志在企业应用中的重要性1.2 使用AOP和注解实现操作日志记录的好...
解决vscode 通过Go:I... 1、背景        在搭建vscode开发环境,需要通过Go:Install/Up...
MySQL 存储过程(超详细) 一、什么是存储过程?存储过程可称为过程化SQL语言,是在普通SQL语句的...