gd32 串口DMA发送&双缓冲接收不定长数据例程
创始人
2024-11-13 16:07:28
0

main.c

/*!     \file    main.c     \brief   running LED      \version 2023-03-31, V1.0.0, firmware for GD32H7xx */  /*     Copyright (c) 2023, GigaDevice Semiconductor Inc.      Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:      1. Redistributions of source code must retain the above copyright notice, this        list of conditions and the following disclaimer.     2. Redistributions in binary form must reproduce the above copyright notice,        this list of conditions and the following disclaimer in the documentation        and/or other materials provided with the distribution.     3. Neither the name of the copyright holder nor the names of its contributors        may be used to endorse or promote products derived from this software without        specific prior written permission.      THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */  #include "gd32h7xx.h" #include "systick.h"  #include "string.h" #include "stdio.h" #include "circular_buffer.h"   #define USART_DMA_TRANSFER_SIZE 4096  __attribute__ ((aligned(32))) uint8_t usart_rx_buff0[USART_DMA_TRANSFER_SIZE] = {0}; __attribute__ ((aligned(32))) uint8_t usart_rx_buff1[USART_DMA_TRANSFER_SIZE] = {0}; __attribute__ ((aligned(32))) uint8_t circular_buffer_data[USART_DMA_TRANSFER_SIZE] = {0};   struct circular_buffer_t circular_buffer;   volatile static int rx_buff_select = 0;  uint8_t* get_rx_buff() {     if (rx_buff_select) return usart_rx_buff0;     else return usart_rx_buff1; }  uint8_t* get_next_rx_buff() {     rx_buff_select = !rx_buff_select;     return get_rx_buff(); }   /*!     \brief      enable the CPU Chache     \param[in]  none     \param[out] none     \retval     none */ static void cache_enable(void) {     /* Enable I-Cache */     SCB_EnableICache();      /* Enable D-Cache */ //    SCB_EnableDCache(); }  void led_config() {     rcu_periph_clock_enable(RCU_GPIOJ);      gpio_mode_set(GPIOJ, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN_8);     gpio_output_options_set(GPIOJ, GPIO_OTYPE_PP, GPIO_OSPEED_60MHZ, GPIO_PIN_8);      gpio_mode_set(GPIOJ, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN_9);     gpio_output_options_set(GPIOJ, GPIO_OTYPE_PP, GPIO_OSPEED_60MHZ, GPIO_PIN_9);      gpio_bit_set(GPIOJ, GPIO_PIN_8);     gpio_bit_set(GPIOJ, GPIO_PIN_9);  }  void clock_config() {     rcu_system_clock_source_config(RCU_CKSYSSRC_IRC64MDIV);     rcu_deinit();      rcu_osci_on(RCU_HXTAL); //开启外部时钟     rcu_osci_stab_wait(RCU_HXTAL); //等待外部时钟稳定 25MHZ      rcu_ahb_clock_config(RCU_AHB_CKSYS_DIV2); //AHB 300MHz     rcu_apb1_clock_config(RCU_APB1_CKAHB_DIV2); //APB1 150MHz     rcu_apb2_clock_config(RCU_APB2_CKAHB_DIV1); //APB2 300MHz     rcu_apb3_clock_config(RCU_APB3_CKAHB_DIV2); //APB3 150MHz     rcu_apb4_clock_config(RCU_APB4_CKAHB_DIV2); //APB4 150MHz      rcu_pll_source_config(RCU_PLLSRC_HXTAL); //选择外部高速时钟源 25MHz      rcu_pll0_config(1, 24, 1, 1, 1); //PLL0P 600MHz     rcu_pll_clock_output_enable(RCU_PLL0P | RCU_PLL0Q | RCU_PLL0R); //PLL0输出使能      RCU_CTL |= RCU_CTL_PLL0EN; //PLL0 使能      rcu_osci_stab_wait(RCU_PLL0_CK); //等待PLL0稳定      rcu_system_clock_source_config(RCU_CKSYSSRC_PLL0P); //CK_SYS 600MHz     SystemCoreClock = 600 * 1000 * 1000; //600MHz }  void usart_config() {     rcu_periph_clock_enable(RCU_GPIOB);     rcu_periph_clock_enable(RCU_USART0);      nvic_irq_enable(USART0_IRQn, 2, 2);      gpio_af_set(GPIOB, GPIO_AF_7, GPIO_PIN_6);     gpio_af_set(GPIOB, GPIO_AF_7, GPIO_PIN_7);      gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_6);     gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_100_220MHZ, GPIO_PIN_6);      gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_7);     gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_100_220MHZ, GPIO_PIN_7);      usart_deinit(USART0);     usart_word_length_set(USART0, USART_WL_8BIT);     usart_stop_bit_set(USART0, USART_STB_1BIT);     usart_parity_config(USART0, USART_PM_NONE);     usart_baudrate_set(USART0, 921600U);     usart_transmit_config(USART0, USART_TRANSMIT_ENABLE);     usart_receive_config(USART0, USART_RECEIVE_ENABLE);     usart_interrupt_enable(USART0, USART_INT_IDLE);     usart_enable(USART0); }  void usart_transmit(char* buff, int size) {     for (int i = 0; i < size; ++i) {         usart_data_transmit(USART0, buff[i]);         while (RESET == usart_flag_get(USART0, USART_FLAG_TBE)) {}     } }   void usart_transmit_dma(char* buff, int size) {     dma_memory_address_config(DMA0, DMA_CH0, DMA_MEMORY_0, buff);     dma_transfer_number_config(DMA0, DMA_CH0, size);     dma_channel_enable(DMA0, DMA_CH0); }   void dma_config() {     rcu_periph_clock_enable(RCU_DMA0);     rcu_periph_clock_enable(RCU_DMAMUX);     nvic_irq_enable(DMA0_Channel0_IRQn, 2, 1);     nvic_irq_enable(DMA0_Channel1_IRQn, 2, 0);      dma_single_data_parameter_struct dma_init_struct;      //TX     dma_deinit(DMA0, DMA_CH0);     dma_single_data_para_struct_init(&dma_init_struct);     dma_init_struct.request      = DMA_REQUEST_USART0_TX;     dma_init_struct.direction    = DMA_MEMORY_TO_PERIPH;     dma_init_struct.memory0_addr  = (uint32_t)0;     dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;     dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;     dma_init_struct.number       = 0;     dma_init_struct.periph_addr  = (uint32_t)(&USART_TDATA(USART0));     dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;     dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;     dma_single_data_mode_init(DMA0, DMA_CH0, &dma_init_struct);      dma_circulation_disable(DMA0, DMA_CH0);     usart_dma_transmit_config(USART0, USART_TRANSMIT_DMA_ENABLE);     dma_interrupt_enable(DMA0, DMA_CH0, DMA_INT_FTF); //    dma_channel_enable(DMA0, DMA_CH0);      //RX     dma_deinit(DMA0, DMA_CH1);     dma_single_data_para_struct_init(&dma_init_struct);     dma_init_struct.request      = DMA_REQUEST_USART0_RX;     dma_init_struct.direction    = DMA_PERIPH_TO_MEMORY;     dma_init_struct.memory0_addr  = (uint32_t)get_next_rx_buff();     dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;     dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;     dma_init_struct.number       = USART_DMA_TRANSFER_SIZE;     dma_init_struct.periph_addr  = (uint32_t)(&USART_RDATA(USART0));     dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;     dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;     dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_struct);      dma_circulation_disable(DMA0, DMA_CH1);     usart_dma_receive_config(USART0, USART_RECEIVE_DMA_ENABLE);     dma_interrupt_enable(DMA0, DMA_CH1, DMA_INT_FTF);     dma_channel_enable(DMA0, DMA_CH1); }  void DMA0_Channel0_IRQHandler() {     if (RESET != dma_interrupt_flag_get(DMA0, DMA_CH0, DMA_INT_FLAG_FTF)) {         dma_interrupt_flag_clear(DMA0, DMA_CH0, DMA_INT_FLAG_FTF);           gpio_bit_toggle(GPIOJ, GPIO_PIN_8);     } }  void DMA0_Channel1_IRQHandler() {     if (RESET != dma_interrupt_flag_get(DMA0, DMA_CH1, DMA_INT_FLAG_FTF)) { //传输完成         dma_interrupt_flag_clear(DMA0, DMA_CH1, DMA_INT_FLAG_FTF);          uint8_t* rx_buff = get_rx_buff();          dma_single_data_parameter_struct dma_init_struct;         dma_deinit(DMA0, DMA_CH1);         dma_single_data_para_struct_init(&dma_init_struct);         dma_init_struct.request      = DMA_REQUEST_USART0_RX;         dma_init_struct.direction    = DMA_PERIPH_TO_MEMORY;         dma_init_struct.memory0_addr  = (uint32_t)get_next_rx_buff();         dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;         dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;         dma_init_struct.number       = USART_DMA_TRANSFER_SIZE;         dma_init_struct.periph_addr  = (uint32_t)(&USART_RDATA(USART0));         dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;         dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;         dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_struct);          dma_circulation_disable(DMA0, DMA_CH1);         usart_dma_receive_config(USART0, USART_RECEIVE_DMA_ENABLE);         dma_interrupt_enable(DMA0, DMA_CH1, DMA_INT_FTF);         dma_channel_enable(DMA0, DMA_CH1);          for (int i = 0; i < USART_DMA_TRANSFER_SIZE; ++i) circular_buffer_push_back(&circular_buffer, rx_buff[i]);          gpio_bit_toggle(GPIOJ, GPIO_PIN_9);     } }  void USART0_IRQHandler() {     if (RESET != usart_interrupt_flag_get(USART0, USART_INT_FLAG_IDLE)) {         usart_interrupt_flag_clear(USART0, USART_INT_FLAG_IDLE);           uint32_t size = USART_DMA_TRANSFER_SIZE - dma_transfer_number_get(DMA0, DMA_CH1);         uint8_t* rx_buff = get_rx_buff();          dma_single_data_parameter_struct dma_init_struct;         dma_deinit(DMA0, DMA_CH1);         dma_single_data_para_struct_init(&dma_init_struct);         dma_init_struct.request      = DMA_REQUEST_USART0_RX;         dma_init_struct.direction    = DMA_PERIPH_TO_MEMORY;         dma_init_struct.memory0_addr  = (uint32_t)get_next_rx_buff();         dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;         dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;         dma_init_struct.number       = USART_DMA_TRANSFER_SIZE;         dma_init_struct.periph_addr  = (uint32_t)(&USART_RDATA(USART0));         dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;         dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;         dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_struct);          dma_circulation_disable(DMA0, DMA_CH1);         usart_dma_receive_config(USART0, USART_RECEIVE_DMA_ENABLE);         dma_interrupt_enable(DMA0, DMA_CH1, DMA_INT_FTF);         dma_channel_enable(DMA0, DMA_CH1);          for (int i = 0; i < size; ++i) circular_buffer_push_back(&circular_buffer, rx_buff[i]);          gpio_bit_toggle(GPIOJ, GPIO_PIN_9);     } }  /*!     \brief      main function     \param[in]  none     \param[out] none     \retval     none */ int main(void) {     /* enable the CPU Cache */     cache_enable();      clock_config(); //使用外部时钟      /* configure systick */     systick_config();      create_circular_buffer(&circular_buffer, circular_buffer_data, USART_DMA_TRANSFER_SIZE);      led_config();     usart_config();     dma_config();       char msg[] = "Hello World\r\n";     usart_transmit_dma(msg, strlen(msg));       while(1) {         while (circular_buffer_available(&circular_buffer)) {             char ch;             circular_buffer_pop_front(&circular_buffer, &ch);             usart_transmit(&ch, 1);         }         delay_1ms(1);     } }   

相关内容

热门资讯

辅助透视!aapoker怎么提... 辅助透视!aapoker怎么提高中牌率(透视)俱乐部靠谱(总是真的是有挂);1、下载好aapoker...
透视ai!aapoker发牌逻... 透视ai!aapoker发牌逻辑(透视)可以提高中牌率(原来是有挂)1、aapoker发牌逻辑透视辅...
透视能赢!aapoker俱乐部... 透视能赢!aapoker俱乐部靠谱吗(透视)可以选牌(本来真的是有挂)1、玩家可以在aapoker俱...
透视挂透视!aapoker辅助... 透视挂透视!aapoker辅助软件合法吗(透视)免费透视脚本(其实有挂)小薇(透视辅助)致您一封信;...
透视安卓版!aapoker怎么... 透视安卓版!aapoker怎么设置提高好牌几率(透视)脚本(切实真的是有挂);1、让任何用户在无需a...
透视真的!aapoker脚本(... 透视真的!aapoker脚本(透视)可以提高中牌率(一直真的是有挂)aapoker脚本是一种具有地方...
透视透视!aa poker辅助... 透视透视!aa poker辅助(透视)辅助器是真的(其实是有挂)1、用户打开应用后不用登录就可以直接...
透视有挂!aapoker怎么开... 透视有挂!aapoker怎么开辅助器(透视)脚本(本来真的有挂)进入游戏-大厅左侧-新手福利-激活码...
透视肯定!aa poker透视... 透视肯定!aa poker透视软件(透视)插件(竟然真的有挂)1、打开软件启动之后找到中间准星的标志...
透视透视挂!aapoker a... 透视透视挂!aapoker ai插件(透视)免费透视脚本(确实是真的有挂)1、操作简单,无需注册,只...