gd32 串口DMA发送&双缓冲接收不定长数据例程
创始人
2024-11-13 16:07:28
0

main.c

/*!     \file    main.c     \brief   running LED      \version 2023-03-31, V1.0.0, firmware for GD32H7xx */  /*     Copyright (c) 2023, GigaDevice Semiconductor Inc.      Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:      1. Redistributions of source code must retain the above copyright notice, this        list of conditions and the following disclaimer.     2. Redistributions in binary form must reproduce the above copyright notice,        this list of conditions and the following disclaimer in the documentation        and/or other materials provided with the distribution.     3. Neither the name of the copyright holder nor the names of its contributors        may be used to endorse or promote products derived from this software without        specific prior written permission.      THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */  #include "gd32h7xx.h" #include "systick.h"  #include "string.h" #include "stdio.h" #include "circular_buffer.h"   #define USART_DMA_TRANSFER_SIZE 4096  __attribute__ ((aligned(32))) uint8_t usart_rx_buff0[USART_DMA_TRANSFER_SIZE] = {0}; __attribute__ ((aligned(32))) uint8_t usart_rx_buff1[USART_DMA_TRANSFER_SIZE] = {0}; __attribute__ ((aligned(32))) uint8_t circular_buffer_data[USART_DMA_TRANSFER_SIZE] = {0};   struct circular_buffer_t circular_buffer;   volatile static int rx_buff_select = 0;  uint8_t* get_rx_buff() {     if (rx_buff_select) return usart_rx_buff0;     else return usart_rx_buff1; }  uint8_t* get_next_rx_buff() {     rx_buff_select = !rx_buff_select;     return get_rx_buff(); }   /*!     \brief      enable the CPU Chache     \param[in]  none     \param[out] none     \retval     none */ static void cache_enable(void) {     /* Enable I-Cache */     SCB_EnableICache();      /* Enable D-Cache */ //    SCB_EnableDCache(); }  void led_config() {     rcu_periph_clock_enable(RCU_GPIOJ);      gpio_mode_set(GPIOJ, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN_8);     gpio_output_options_set(GPIOJ, GPIO_OTYPE_PP, GPIO_OSPEED_60MHZ, GPIO_PIN_8);      gpio_mode_set(GPIOJ, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN_9);     gpio_output_options_set(GPIOJ, GPIO_OTYPE_PP, GPIO_OSPEED_60MHZ, GPIO_PIN_9);      gpio_bit_set(GPIOJ, GPIO_PIN_8);     gpio_bit_set(GPIOJ, GPIO_PIN_9);  }  void clock_config() {     rcu_system_clock_source_config(RCU_CKSYSSRC_IRC64MDIV);     rcu_deinit();      rcu_osci_on(RCU_HXTAL); //开启外部时钟     rcu_osci_stab_wait(RCU_HXTAL); //等待外部时钟稳定 25MHZ      rcu_ahb_clock_config(RCU_AHB_CKSYS_DIV2); //AHB 300MHz     rcu_apb1_clock_config(RCU_APB1_CKAHB_DIV2); //APB1 150MHz     rcu_apb2_clock_config(RCU_APB2_CKAHB_DIV1); //APB2 300MHz     rcu_apb3_clock_config(RCU_APB3_CKAHB_DIV2); //APB3 150MHz     rcu_apb4_clock_config(RCU_APB4_CKAHB_DIV2); //APB4 150MHz      rcu_pll_source_config(RCU_PLLSRC_HXTAL); //选择外部高速时钟源 25MHz      rcu_pll0_config(1, 24, 1, 1, 1); //PLL0P 600MHz     rcu_pll_clock_output_enable(RCU_PLL0P | RCU_PLL0Q | RCU_PLL0R); //PLL0输出使能      RCU_CTL |= RCU_CTL_PLL0EN; //PLL0 使能      rcu_osci_stab_wait(RCU_PLL0_CK); //等待PLL0稳定      rcu_system_clock_source_config(RCU_CKSYSSRC_PLL0P); //CK_SYS 600MHz     SystemCoreClock = 600 * 1000 * 1000; //600MHz }  void usart_config() {     rcu_periph_clock_enable(RCU_GPIOB);     rcu_periph_clock_enable(RCU_USART0);      nvic_irq_enable(USART0_IRQn, 2, 2);      gpio_af_set(GPIOB, GPIO_AF_7, GPIO_PIN_6);     gpio_af_set(GPIOB, GPIO_AF_7, GPIO_PIN_7);      gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_6);     gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_100_220MHZ, GPIO_PIN_6);      gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_7);     gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_100_220MHZ, GPIO_PIN_7);      usart_deinit(USART0);     usart_word_length_set(USART0, USART_WL_8BIT);     usart_stop_bit_set(USART0, USART_STB_1BIT);     usart_parity_config(USART0, USART_PM_NONE);     usart_baudrate_set(USART0, 921600U);     usart_transmit_config(USART0, USART_TRANSMIT_ENABLE);     usart_receive_config(USART0, USART_RECEIVE_ENABLE);     usart_interrupt_enable(USART0, USART_INT_IDLE);     usart_enable(USART0); }  void usart_transmit(char* buff, int size) {     for (int i = 0; i < size; ++i) {         usart_data_transmit(USART0, buff[i]);         while (RESET == usart_flag_get(USART0, USART_FLAG_TBE)) {}     } }   void usart_transmit_dma(char* buff, int size) {     dma_memory_address_config(DMA0, DMA_CH0, DMA_MEMORY_0, buff);     dma_transfer_number_config(DMA0, DMA_CH0, size);     dma_channel_enable(DMA0, DMA_CH0); }   void dma_config() {     rcu_periph_clock_enable(RCU_DMA0);     rcu_periph_clock_enable(RCU_DMAMUX);     nvic_irq_enable(DMA0_Channel0_IRQn, 2, 1);     nvic_irq_enable(DMA0_Channel1_IRQn, 2, 0);      dma_single_data_parameter_struct dma_init_struct;      //TX     dma_deinit(DMA0, DMA_CH0);     dma_single_data_para_struct_init(&dma_init_struct);     dma_init_struct.request      = DMA_REQUEST_USART0_TX;     dma_init_struct.direction    = DMA_MEMORY_TO_PERIPH;     dma_init_struct.memory0_addr  = (uint32_t)0;     dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;     dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;     dma_init_struct.number       = 0;     dma_init_struct.periph_addr  = (uint32_t)(&USART_TDATA(USART0));     dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;     dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;     dma_single_data_mode_init(DMA0, DMA_CH0, &dma_init_struct);      dma_circulation_disable(DMA0, DMA_CH0);     usart_dma_transmit_config(USART0, USART_TRANSMIT_DMA_ENABLE);     dma_interrupt_enable(DMA0, DMA_CH0, DMA_INT_FTF); //    dma_channel_enable(DMA0, DMA_CH0);      //RX     dma_deinit(DMA0, DMA_CH1);     dma_single_data_para_struct_init(&dma_init_struct);     dma_init_struct.request      = DMA_REQUEST_USART0_RX;     dma_init_struct.direction    = DMA_PERIPH_TO_MEMORY;     dma_init_struct.memory0_addr  = (uint32_t)get_next_rx_buff();     dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;     dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;     dma_init_struct.number       = USART_DMA_TRANSFER_SIZE;     dma_init_struct.periph_addr  = (uint32_t)(&USART_RDATA(USART0));     dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;     dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;     dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_struct);      dma_circulation_disable(DMA0, DMA_CH1);     usart_dma_receive_config(USART0, USART_RECEIVE_DMA_ENABLE);     dma_interrupt_enable(DMA0, DMA_CH1, DMA_INT_FTF);     dma_channel_enable(DMA0, DMA_CH1); }  void DMA0_Channel0_IRQHandler() {     if (RESET != dma_interrupt_flag_get(DMA0, DMA_CH0, DMA_INT_FLAG_FTF)) {         dma_interrupt_flag_clear(DMA0, DMA_CH0, DMA_INT_FLAG_FTF);           gpio_bit_toggle(GPIOJ, GPIO_PIN_8);     } }  void DMA0_Channel1_IRQHandler() {     if (RESET != dma_interrupt_flag_get(DMA0, DMA_CH1, DMA_INT_FLAG_FTF)) { //传输完成         dma_interrupt_flag_clear(DMA0, DMA_CH1, DMA_INT_FLAG_FTF);          uint8_t* rx_buff = get_rx_buff();          dma_single_data_parameter_struct dma_init_struct;         dma_deinit(DMA0, DMA_CH1);         dma_single_data_para_struct_init(&dma_init_struct);         dma_init_struct.request      = DMA_REQUEST_USART0_RX;         dma_init_struct.direction    = DMA_PERIPH_TO_MEMORY;         dma_init_struct.memory0_addr  = (uint32_t)get_next_rx_buff();         dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;         dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;         dma_init_struct.number       = USART_DMA_TRANSFER_SIZE;         dma_init_struct.periph_addr  = (uint32_t)(&USART_RDATA(USART0));         dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;         dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;         dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_struct);          dma_circulation_disable(DMA0, DMA_CH1);         usart_dma_receive_config(USART0, USART_RECEIVE_DMA_ENABLE);         dma_interrupt_enable(DMA0, DMA_CH1, DMA_INT_FTF);         dma_channel_enable(DMA0, DMA_CH1);          for (int i = 0; i < USART_DMA_TRANSFER_SIZE; ++i) circular_buffer_push_back(&circular_buffer, rx_buff[i]);          gpio_bit_toggle(GPIOJ, GPIO_PIN_9);     } }  void USART0_IRQHandler() {     if (RESET != usart_interrupt_flag_get(USART0, USART_INT_FLAG_IDLE)) {         usart_interrupt_flag_clear(USART0, USART_INT_FLAG_IDLE);           uint32_t size = USART_DMA_TRANSFER_SIZE - dma_transfer_number_get(DMA0, DMA_CH1);         uint8_t* rx_buff = get_rx_buff();          dma_single_data_parameter_struct dma_init_struct;         dma_deinit(DMA0, DMA_CH1);         dma_single_data_para_struct_init(&dma_init_struct);         dma_init_struct.request      = DMA_REQUEST_USART0_RX;         dma_init_struct.direction    = DMA_PERIPH_TO_MEMORY;         dma_init_struct.memory0_addr  = (uint32_t)get_next_rx_buff();         dma_init_struct.memory_inc   = DMA_MEMORY_INCREASE_ENABLE;         dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;         dma_init_struct.number       = USART_DMA_TRANSFER_SIZE;         dma_init_struct.periph_addr  = (uint32_t)(&USART_RDATA(USART0));         dma_init_struct.periph_inc   = DMA_PERIPH_INCREASE_DISABLE;         dma_init_struct.priority     = DMA_PRIORITY_ULTRA_HIGH;         dma_single_data_mode_init(DMA0, DMA_CH1, &dma_init_struct);          dma_circulation_disable(DMA0, DMA_CH1);         usart_dma_receive_config(USART0, USART_RECEIVE_DMA_ENABLE);         dma_interrupt_enable(DMA0, DMA_CH1, DMA_INT_FTF);         dma_channel_enable(DMA0, DMA_CH1);          for (int i = 0; i < size; ++i) circular_buffer_push_back(&circular_buffer, rx_buff[i]);          gpio_bit_toggle(GPIOJ, GPIO_PIN_9);     } }  /*!     \brief      main function     \param[in]  none     \param[out] none     \retval     none */ int main(void) {     /* enable the CPU Cache */     cache_enable();      clock_config(); //使用外部时钟      /* configure systick */     systick_config();      create_circular_buffer(&circular_buffer, circular_buffer_data, USART_DMA_TRANSFER_SIZE);      led_config();     usart_config();     dma_config();       char msg[] = "Hello World\r\n";     usart_transmit_dma(msg, strlen(msg));       while(1) {         while (circular_buffer_available(&circular_buffer)) {             char ch;             circular_buffer_pop_front(&circular_buffer, &ch);             usart_transmit(&ch, 1);         }         delay_1ms(1);     } }   

相关内容

热门资讯

透视软件!哈糖大菠萝万能挂(透... 透视软件!哈糖大菠萝万能挂(透视)底牌透视挂辅助程序(可靠开挂辅助必赢教程)-哔哩哔哩;1、超多福利...
透视工具!wepoker破解工... 透视工具!wepoker破解工具,威信茶馆透视挂,力荐教程(有挂细节)-哔哩哔哩1、起透看视 威信茶...
九分钟了解!微乐家乡麻将挂(辅... 九分钟了解!微乐家乡麻将挂(辅助挂)最初真的是有挂(专业辅助分享教程)-哔哩哔哩;最新版2026是一...
黑科技辅助!wpk发牌可以这离... 黑科技辅助!wpk发牌可以这离谱(智能ai辅助插件安装)软件透明挂黑科技(本来是真的有挂)-哔哩哔哩...
透视实锤!wepoker透视是... 您好:wepoker透视是真的这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多...
透视美元局!wepokerpl... 透视美元局!wepokerplus开挂,武陵游辅助器,线上教程(有挂猫腻)-哔哩哔哩1、下载好武陵游...
黑科技辅助!德州ai辅助外挂(... 黑科技辅助!德州ai辅助外挂(智能ai辅助工具)软件透明挂黑科技(一直有挂)-哔哩哔哩;德州ai辅助...
第九分钟了解!五彩茶馆有挂(辅... 第九分钟了解!五彩茶馆有挂(辅助挂)从前是真的有挂(专业辅助必胜教程)-哔哩哔哩;是一款可以让一直输...
透视挂透视!德州局透视脚本(透... 透视挂透视!德州局透视脚本(透视)底牌透视挂辅助插件(可靠开挂辅助安装教程)-哔哩哔哩相信很多朋友都...
透视挂!wepoker透视方法... 透视挂!wepoker透视方法,微乐春天小程序辅助,必胜教程(有挂解惑)-哔哩哔哩1、完成微乐春天小...