【TVM 教程】在 CUDA 上部署量化模型
创始人
2024-11-12 20:07:27
0

更多 TVM 中文文档可访问 →Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。 | Apache TVM 中文站

作者:Wuwei Lin

本文介绍如何用 TVM 自动量化(TVM 的一种量化方式)。有关 TVM 中量化的更多详细信息,参阅 此处。本教程将在 ImageNet 上导入一个 GluonCV 预训练模型到 Relay,量化 Relay 模型,然后执行推理。

import tvm from tvm import te from tvm import relay import mxnet as mx from tvm.contrib.download import download_testdata from mxnet import gluon import logging import os  batch_size = 1 model_name = "resnet18_v1" target = "cuda" dev = tvm.device(target) 

准备数据集​

以下演示如何为量化准备校准数据集,首先下载 ImageNet 的验证集,并对数据集进行预处理。

calibration_rec = download_testdata(  "http://data.mxnet.io.s3-website-us-west-1.amazonaws.com/data/val_256_q90.rec",  "val_256_q90.rec", )  def get_val_data(num_workers=4):     mean_rgb = [123.68, 116.779, 103.939]     std_rgb = [58.393, 57.12, 57.375]   def batch_fn(batch):  return batch.data[0].asnumpy(), batch.label[0].asnumpy()      img_size = 299 if model_name == "inceptionv3" else 224     val_data = mx.io.ImageRecordIter(         path_imgrec=calibration_rec,         preprocess_threads=num_workers,         shuffle=False,         batch_size=batch_size,         resize=256,         data_shape=(3, img_size, img_size),         mean_r=mean_rgb[0],         mean_g=mean_rgb[1],         mean_b=mean_rgb[2],         std_r=std_rgb[0],         std_g=std_rgb[1],         std_b=std_rgb[2],  )  return val_data, batch_fn 

把校准数据集(可迭代对象)定义为 Python 中的生成器对象,本教程仅用几个样本进行校准。

calibration_samples = 10  def calibrate_dataset():     val_data, batch_fn = get_val_data()     val_data.reset()  for i, batch in enumerate(val_data):  if i * batch_size >= calibration_samples:  break         data, _ = batch_fn(batch)  yield {"data": data} 

导入模型​

用 Relay MxNet 前端从 Gluon 模型集合(model zoo)中导入模型。

def get_model():     gluon_model = gluon.model_zoo.vision.get_model(model_name, pretrained=True)     img_size = 299 if model_name == "inceptionv3" else 224     data_shape = (batch_size, 3, img_size, img_size)     mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})  return mod, params 

量化模型​

量化过程要找到每一层的每个权重和中间特征图(feature map)张量的 scale。

对于权重而言,scales 是根据权重的值直接计算出来的。支持两种模式:power2 和 max。这两种模式都是先找到权重张量内的最大值。在 power2 模式下,最大值向下舍入为 2 的幂。如果权重和中间特征图的 scale 都是 2 的幂,则可以利用移位(bit shifting)进行乘法运算,这使得计算效率更高。在 max 模式下,最大值用作 scale。如果不进行四舍五入,在某些情况下 max 模式可能具有更好的精度。当 scale 不是 2 的幂时,将使用定点乘法。

中间特征图可以通过数据感知量化来找到 scale。数据感知量化将校准数据集作为输入参数,通过最小化量化前后激活分布之间的 KL 散度来计算 scales。或者也可以用预定义的全局 scales,这样可以节省校准时间,但会影响准确性。

def quantize(mod, params, data_aware):  if data_aware:  with relay.quantize.qconfig(calibrate_mode="kl_divergence", weight_scale="max"):             mod = relay.quantize.quantize(mod, params, dataset=calibrate_dataset())  else:  with relay.quantize.qconfig(calibrate_mode="global_scale", global_scale=8.0):             mod = relay.quantize.quantize(mod, params)  return mod 

运行推理​

创建一个 Relay VM 来构建和执行模型。

def run_inference(mod):     model = relay.create_executor("vm", mod, dev, target).evaluate()     val_data, batch_fn = get_val_data()  for i, batch in enumerate(val_data):         data, label = batch_fn(batch)         prediction = model(data)  if i > 10: # 本教程只对几个样本进行推理  break  def main():     mod, params = get_model()     mod = quantize(mod, params, data_aware=True)     run_inference(mod)  if __name__ == "__main__":     main() 

输出结果:

/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead.  "target_host parameter is going to be deprecated. " /workspace/python/tvm/relay/build_module.py:411: DeprecationWarning: Please use input parameter mod (tvm.IRModule) instead of deprecated parameter mod (tvm.relay.function.Function)   DeprecationWarning, 

脚本总运行时长: (1 分 22.338 秒)

下载 Python 源代码:deploy_quantized.py

下载 Jupyter Notebook:deploy_quantized.ipynb

相关内容

热门资讯

一分钟了解“微信茶馆辅助”详细... 【福星临门,好运相随】;一分钟了解“微信茶馆辅助”详细透视开挂辅助器-哔哩哔哩;暗藏猫腻,小编详细说...
八分钟了解(多多28)外挂透明... 您好:多多28这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,...
六分钟科普!hh poker透... 六分钟科普!hh poker透视器下载,werplan怎么透视挂,必赢方法(的确有挂)-哔哩哔哩1、...
第二阶段了解!朱雀开心罗松开挂... 第二阶段了解!朱雀开心罗松开挂,hhpoker为什么一直输,技巧教程(今日头条)1、操作简单,无需注...
两分钟了解“皮皮衡阳字牌黑科技... 两分钟了解“皮皮衡阳字牌黑科技视频”详细透视开挂辅助攻略-哔哩哔哩;一、皮皮衡阳字牌黑科技视频有挂的...
两分钟了解(微乐a3)外挂辅助... 两分钟了解(微乐a3)外挂辅助工具(透视)黑科技教程(2020已更新)(哔哩哔哩);微乐a3软件透明...
四分钟透视!wepoker有机... 四分钟透视!wepoker有机器人吗,德普之星有没有挂,线上教程(有挂解惑)-哔哩哔哩1.德普之星有...
十刹那了解!葫芦娃七子降妖内购... 十刹那了解!葫芦娃七子降妖内购破解版下载,pokemmo脚本辅助下载,新2025版(有挂透视)1、葫...
第7分钟了解“广东雀神智能免费... 第7分钟了解“广东雀神智能免费插件安装包”详细透视开挂辅助挂-哔哩哔哩,广东雀神智能免费插件安装包是...
第8分钟了解(66徐州麻将)外... 第8分钟了解(66徐州麻将)外挂辅助神器(辅助挂)介绍教程(2024已更新)(哔哩哔哩);66徐州麻...