[论文精读]Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis
创始人
2024-11-12 10:05:45
0

论文原文:3504035.3504050 (acm.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related work

2.4. Preliminaries

2.5. Methodology

2.5.1. Problem definition

2.5.2. M2E approach

2.5.3. Optimization framework

2.6. Experiments and evaluation

2.6.1. Data collection and preprocessing

2.6.2. Baselines and metrics

2.6.3. Clustering results

2.6.4. Parameter sensitivity analysis

2.6.5. Factor analysis

2.7. Conclusion

3. 知识补充

3.1. 偏对称张量

4. Reference


1. 省流版

1.1. 心得

(1)这个好像不是深度学习捏~

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①They proposed a Multi-view Multigraph Embedding (M2E) to get information from different views

2.2. Introduction

        ①The conceptual view of M2E:

2.3. Related work

        ①Introducing graph embedding methods

        ②Compared with multi-view clustering and multi-view embedding

2.4. Preliminaries

        ①Notations:

        ②Definition 1: introducing partial symmetric tensor(不过我觉得作者没有解释地很清楚,他说“如果一个M阶张量在模态1到M上偏对称,那么它就是秩一偏对称张量”。不如看看我的知识补充)

        ③Definition 2: matricize tensor \mathcal{X}\in\mathbb{R}^{I_{1}\times\cdots\times I_{M}} to \mathbf{X}_{(m)}\in \mathbb{R}^{I_m\times J}, where 

\begin{aligned}&j=1+\sum_{p=1,p\neq m}^{M}(i_{p}-1)J_{p}, with\\&J_{p}=\begin{cases}1,&if p=1 or (p=2 and m=1)\\\Pi_{q=1,q\neq m}^{p-1}I_q,&otherwise.\end{cases}\end{aligned}

        ④Definition 3: factorize \mathcal{X}\in\mathbb{R}^{I_{1}\times\cdots\times I_{M}} to:

\mathcal{X}\approx\sum_{r=1}^R\mathbf{x}_r^{(1)}\circ\cdots\circ\mathbf{x}_r^{(M)}\equiv[[\mathbf{X}^{(1)},...,\mathbf{X}^{(M)}]]

which needs to minimize the estimation error:

\mathcal{L}=\min_{\mathbf{X}^{(1)},\cdots,\mathbf{X}^{(M)}}\lVert\mathcal{X}-[[\mathbf{X}^{(1)},\cdots,\mathbf{X}^{(M)}]]\rVert_F^2

and, to solve non convex optimization problems:

\mathbf{X}^{(k)}\leftarrow\arg\min_{\mathbf{X}^{(k)}}\|\mathbf{X}_{(k)}-\mathbf{X}^{(k)}(\odot_{i\neq k}^n\mathbf{X}^{(i)})^\mathrm{T}\|_F^2

where \odot_{i\neq k}^{M}\mathbf{X}^{(i)}=\mathbf{X}^{(M)}\odot\cdots\mathbf{X}^{(k-1)}\odot\mathbf{X}^{(k+1)}\cdots\odot\mathbf{X}^{(1)}

2.5. Methodology

2.5.1. Problem definition

        ①For N samples with V views, they have brain connectivity \mathbf{W}\in\mathbb{R}^{M\times M} each with M nodes

        ②For each view, the whole graph set is \mathcal{D}^{(v)}=\{\mathbf{W}_{1}^{(v)},\mathbf{W}_{2}^{(v)},\cdots,\mathbf{W}_{N}^{(v)}\}

        ③All the views: \mathcal{D} = \{\mathcal{D}^{(1)},\mathcal{D}^{(2)},\cdots,\mathcal{D}^{(V)}\}

        ④To learn an embedding \mathbf{F}^*\in\mathbb{R}^{N\times R} for each participant 

2.5.2. M2E approach

        ①Concatenated third-order tensor: 

\mathcal{X}^{(v)}=[\mathbf{W}_1^{(v)},\mathbf{W}_2^{(v)},\cdots,\mathbf{W}_N^{(v)}]\in \mathbb{R}^{M\times M\times N},v \in [1 : V]

        ②Embedding function:

\min_{\mathbf{H}^{(v)},\mathbf{F}^{(v)}}\sum_{v=1}^V||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{H}^{(v)},\mathbf{F}^{(v)}]]||_F^2

where \mathbf{H}^{(v)}\in\mathbb{R}^{M\times R} and \mathbf{F}^{(v)}\in\mathbb{R}^{N\times R} calculated by CP factorization:

        ③Common embedding learning:

\min_{\mathbf{F}^*}\sum_{v=1}^V\lambda_v||\mathbf{F}^{(v)}-\mathbf{F}^*||_F^2

        ④Combining them to optimize M2E:

\begin{aligned}\mathcal{O}&=\min_{\mathbf{H}^{(v)},\mathbf{F}^{*},\mathbf{F}^{(v)}}\sum_{v=1}^{V}||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{H}^{(v)},\mathbf{F}^{(v)}]]||_{F}^{2}\\&+\sum_{v=1}^{V}\lambda_{v}||\mathbf{F}^{(v)}-\mathbf{F}^{*}||_{F}^{2}\end{aligned}

where the first term is for minimize the dependence of multi-graphs and the second is for multi-views

2.5.3. Optimization framework

        ①Parameter needs estimate: \mathbf{H}^{(v)}\in\mathbb{R}^{M\times R}\mathbf{F }^{(v)}\in\mathbb{R}^{N\times R}, and \mathbf{F}^{*}\in\mathbb{R}^{N\times R}. Due to they are not convex, no closed-form adopted. Then they introduced an iteration method, Alternating Direction Method of Multipliers (ADMM) approach.

        ②They use variable substitution technique, fixing \mathbf{F }^{(v)} and \mathbf{F}^{*}, compute \mathbf{H}^{(v)}:

\begin{aligned}&\min_{\mathbf{H}^{(v)},\mathbf{P}^{(v)}}||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{P}^{(v)},\mathbf{F}^{(v)}]]||_{F}^{2}\\&s.t. \mathbf{H}^{(v)}= \mathbf{P}^{(v)}\end{aligned}

the Lagragian function:

\mathcal{L}(\mathbf{H}^{(v)},\mathbf{P}^{(v)})=\|\mathcal{X}^{(v)}-[\mathbf{H}^{(v)},\mathbf{P}^{(v)},\mathbf{F}^{(v)}]\|_{F}^{2}\\+tr(\mathbf{U}^{(v)T}(\mathbf{H}^{(v)}-\mathbf{P}^{(v)}))+\frac{\mu}{2}\|\mathbf{H}^{(v)}-\mathbf{P}^{(v)}\|_{F}^{2}

where \mathbf{U}^{(v)}\in\mathbb{R}^{M\times R} denotes Lagrange multipliers, \mu denotes penalty parameter. Optimization problem:

\min_{\mathbf{H}^{(v)}}||\mathbf{X}_{(1)}^{(v)}-\mathbf{H}^{(v)}\mathbf{D}^{(v)\text{T}}||_F^2+\frac{\mu}{2}||\mathbf{H}^{(v)}-\mathbf{P}^{(v)}+\frac{1}{\mu}\mathbf{U}^{(v)}||_F^2

they transfer \mathcal{X}^{(v)} to \mathbf{X}_{(1)}^{(v)}\in\mathbb{R}^{M\times(MN)}, and define \mathbf{D}^{(v)}=\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)}\in\mathbb{R}^{(NM)\times R}

. Further changing the minimizing function:

\min_{\mathbf{H}^{(v)}}tr(\mathbf{H}^{(v)}\mathbf{A}^{(v)}\mathbf{H}^{(v)^{\mathrm{T}}})-tr(\mathbf{B}^{(v)^{\mathrm{T}}}\mathbf{H}^{(v)})

where \mathbf{A}^{(v)}=\mathbf{D}^{(v)^{\mathrm{T}}}\mathbf{D}^{(v)}+\frac{\mu}{2}\mathbf{I} and \mathbf{B}^{(v)}=2\mathbf{X}_{(1)}^{(v)}\mathbf{D}^{(v)}+\mu\mathbf{P}^{(v)}-\mathbf{U}^{(v)}. Solving it by update \mathbf{H}^{(v)}

\mathbf{H}_{t+1}^{(v)}\leftarrow\mathbf{H}_t^{(v)}-\frac1{L^{(v)}}(2\mathbf{H}^{(v)^\mathrm{T}}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where L^{(v)} denotes Lipschitz coefficient and equals to the maximum eigenvalue of 2\mathbf{A}^{(v)}. They applied Khatri-Rao product to calculate \mathbf{D}^{(v)^\mathrm{T}}\mathbf{D}^{(v)}:

\begin{aligned} \mathbf{D}^{(v)^{\mathrm{T}}}\mathbf{D}^{(v)}& =(\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)^{\mathrm{T}}})(\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)}) \\ &=(\mathbf{F}^{(v)^{\mathrm{T}}}\mathbf{F}^{(v)})*(\mathbf{P}^{(v)^{\mathrm{T}}}\mathbf{P}^{(v)}) \end{aligned}

where \ast denotes Hadamard product. The updating function of \mathrm{P}^{(v)}:

\mathbf{P}_{t+1}^{(v)}\leftarrow\mathbf{P}_t^{(v)}-\frac1{L^{(v)}}(2\mathbf{P}_t^{(v)}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where \mathbf{A}^{(v)}=\mathbf{E}^{(v)^{\mathrm{T}}}\mathbf{E}^{(v)}+\frac\mu2(\mathbf{I})\mathbf{B}^{(v)}=2\mathbf{X}_{(2)}^{(v)}\mathbf{E}^{(v)}+\mu\mathbf{H}^{(v)}+\mathbf{U}^{(v)}\mathbf{E}^{(v)}=\mathbf{F}^{(v)}\odot\mathbf{H}^{(v)}\in\mathbb{R}^{(NM)\times R}. Lastly update \mathrm{U}(v):

\mathbf{U}_t^{(v)}\leftarrow\mathbf{U}_t^{(v)}+\mu(\mathbf{H}^{(v)}-\mathbf{P}^{(v)})

        ③Then they fix \mathbf{F}^{*} and \mathbf{H}^{(v)} to compute \mathbf{F }^{(v)} by minimize:

\min_{\mathbf{F}^{(v)}} ||\mathbf{X}_{(3)}^{(v)}-\mathbf{F}^{(v)}\mathbf{J}^{(v)^{\mathrm{T}}}||_{F}^{2}+\lambda_{(v)}||\mathbf{F}^{(v)}-\mathbf{F}^{*}||_{F}^{2}

where \mathbf{J}^{(v)}=\mathbf{P}^{(v)}\odot\mathbf{H}^{(v)}\in\mathbb{R}^{(MM)\times R}. The updating function of \mathbf{F }^{(v)}:

\mathbf{F}_{t+1}^{(v)}\leftarrow\mathbf{F}_t^{(v)}-\frac{1}{L^{(v)}}(2\mathbf{F}_t^{(v)}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where \mathbf{A}^{(v)} = \mathbf{J}^{(v)^\mathrm{T}}\mathbf{J}^{(v)} + \lambda_{(v)}(\mathbf{I})\mathbf{B}^{v} = 2\mathbf{X}_{(3)}^{(v)}\mathbf{J}^{(v)} +2\lambda_{(v)}\mathbf{F}^*

        ④Finally, they fix \mathbf{H}^{(v)} and \mathbf{F }^{(v)} to minimize {\mathcal{O}} over \mathbf{F}^{*}:

\mathbf{F}^*=\frac{\sum_{v=1}^V\lambda_{(v)}\mathbf{F}^{(v)}}{\sum_{v=1}^V\lambda_{(v)}}

        ⑤Overall time complexity: 

O(MaxIter(R^{3}+R^{2}(2M+N+1)+(M^{2}N+M+NV)R)V)

2.6. Experiments and evaluation

2.6.1. Data collection and preprocessing

(1)Human Immunodeficiency Virus Infection (HIV)

        ①Sample: randomly select 35 patients and 35 controls from dataset due to the data imbalance

        ②Atlas: AAL 90

(2)Bipolar Disorder (BP)

        ①Sample: 52 BP and 45 controls

        ②Atlas: self-generated 82 regions

euthymia  n. 情感正常

2.6.2. Baselines and metrics

        ①Introducing compared models

        ②Grid search for hyper-parameters: \lambda _1,\lambda _2\in\{10^{-4},10^{-2},...,10^{4}\}R form \{1,2,...,20\}

2.6.3. Clustering results

        ①Performance comparison table:

2.6.4. Parameter sensitivity analysis

        ①Ablation on \lambda:

        ②Ablation on R:

2.6.5. Factor analysis

        ①The activity intensity of the brain region and the embedded feature \mathbf{F }^{(v)}:

2.7. Conclusion

        They design a novel multi-view multi-graph embedding framework based on partially-symmetric tensor factorization

3. 知识补充

3.1. 偏对称张量

(1)定义:偏对称张量是指张量中的某些分量在特定的下标重排后,其值保持不变。这种性质与张量的对称性有关,但与完全对称的张量(即所有下标重排后元素都相等的张量)不同,偏对称张量只要求部分下标重排后元素相等。

(2)示例:以三阶张量为例,如果满足以下条件之一或多个,则可以称为偏对称张量:

        ①x_{ijk}=x_{jik}(第一个和第二个下标互换)

        ②x_{ijk}=x_{kji}(第一个和第三个下标互换)

        ③x_{ijk}=x_{jik}=x_{kij}(同时满足前两个条件)

4. Reference

Liu, Y. et al. (2018) 'Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis', AAAI. doi: https://doi.org/10.48550/arXiv.1806.07703

相关内容

热门资讯

9瞬间知晓!欢聚水鱼透视插件下... 您好:欢聚水鱼透视插件下载渠道这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多...
重大发现!拱趴大菠萝挂怎么安装... 重大发现!拱趴大菠萝挂怎么安装,雀友软件脚本辅助器,玩家教你(有挂规律);无需打开直接搜索加(薇:1...
4分钟办法!广东雀用的是什么智... 4分钟办法!广东雀用的是什么智能插件官(透视)详细开挂辅助挂(了解有挂)1、下载安装好广东雀用的是什...
透视数据!wepoker透视脚... 您好:wepoker透视脚本视频这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很...
第一小时晓得!贪玩娱乐科技(透... 第一小时晓得!贪玩娱乐科技(透视)一向有开挂辅助软件(有挂实锤);无需打开直接搜索加(薇:13670...
透明总结!新玄龙辅助,樱花之盛... 透明总结!新玄龙辅助,樱花之盛辅助软件,玩家教程(有挂分享);无需打开直接搜索加薇136704302...
透明教学!aapoker怎么开... 您好:aapoker怎么开辅助器这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很...
第7分钟机巧!微信微乐小程序辅... 第7分钟机巧!微信微乐小程序辅助器免费安装(透视)详细开挂辅助神器(有挂教学)1、下载安装好微信微乐...
第三阶段精通!皇豪互众智能辅助... 第三阶段精通!皇豪互众智能辅助器(透视)从前有开挂辅助挂(真的有挂);无需打开直接搜索加薇13670...
一秒答解!微乐自建房辅助工具安... 一秒答解!微乐自建房辅助工具安全吗,微乐多乐跑作弊,可靠技巧(有挂神器);无需打开直接搜索加(薇:1...