[论文精读]Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis
创始人
2024-11-12 10:05:45
0

论文原文:3504035.3504050 (acm.org)

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related work

2.4. Preliminaries

2.5. Methodology

2.5.1. Problem definition

2.5.2. M2E approach

2.5.3. Optimization framework

2.6. Experiments and evaluation

2.6.1. Data collection and preprocessing

2.6.2. Baselines and metrics

2.6.3. Clustering results

2.6.4. Parameter sensitivity analysis

2.6.5. Factor analysis

2.7. Conclusion

3. 知识补充

3.1. 偏对称张量

4. Reference


1. 省流版

1.1. 心得

(1)这个好像不是深度学习捏~

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①They proposed a Multi-view Multigraph Embedding (M2E) to get information from different views

2.2. Introduction

        ①The conceptual view of M2E:

2.3. Related work

        ①Introducing graph embedding methods

        ②Compared with multi-view clustering and multi-view embedding

2.4. Preliminaries

        ①Notations:

        ②Definition 1: introducing partial symmetric tensor(不过我觉得作者没有解释地很清楚,他说“如果一个M阶张量在模态1到M上偏对称,那么它就是秩一偏对称张量”。不如看看我的知识补充)

        ③Definition 2: matricize tensor \mathcal{X}\in\mathbb{R}^{I_{1}\times\cdots\times I_{M}} to \mathbf{X}_{(m)}\in \mathbb{R}^{I_m\times J}, where 

\begin{aligned}&j=1+\sum_{p=1,p\neq m}^{M}(i_{p}-1)J_{p}, with\\&J_{p}=\begin{cases}1,&if p=1 or (p=2 and m=1)\\\Pi_{q=1,q\neq m}^{p-1}I_q,&otherwise.\end{cases}\end{aligned}

        ④Definition 3: factorize \mathcal{X}\in\mathbb{R}^{I_{1}\times\cdots\times I_{M}} to:

\mathcal{X}\approx\sum_{r=1}^R\mathbf{x}_r^{(1)}\circ\cdots\circ\mathbf{x}_r^{(M)}\equiv[[\mathbf{X}^{(1)},...,\mathbf{X}^{(M)}]]

which needs to minimize the estimation error:

\mathcal{L}=\min_{\mathbf{X}^{(1)},\cdots,\mathbf{X}^{(M)}}\lVert\mathcal{X}-[[\mathbf{X}^{(1)},\cdots,\mathbf{X}^{(M)}]]\rVert_F^2

and, to solve non convex optimization problems:

\mathbf{X}^{(k)}\leftarrow\arg\min_{\mathbf{X}^{(k)}}\|\mathbf{X}_{(k)}-\mathbf{X}^{(k)}(\odot_{i\neq k}^n\mathbf{X}^{(i)})^\mathrm{T}\|_F^2

where \odot_{i\neq k}^{M}\mathbf{X}^{(i)}=\mathbf{X}^{(M)}\odot\cdots\mathbf{X}^{(k-1)}\odot\mathbf{X}^{(k+1)}\cdots\odot\mathbf{X}^{(1)}

2.5. Methodology

2.5.1. Problem definition

        ①For N samples with V views, they have brain connectivity \mathbf{W}\in\mathbb{R}^{M\times M} each with M nodes

        ②For each view, the whole graph set is \mathcal{D}^{(v)}=\{\mathbf{W}_{1}^{(v)},\mathbf{W}_{2}^{(v)},\cdots,\mathbf{W}_{N}^{(v)}\}

        ③All the views: \mathcal{D} = \{\mathcal{D}^{(1)},\mathcal{D}^{(2)},\cdots,\mathcal{D}^{(V)}\}

        ④To learn an embedding \mathbf{F}^*\in\mathbb{R}^{N\times R} for each participant 

2.5.2. M2E approach

        ①Concatenated third-order tensor: 

\mathcal{X}^{(v)}=[\mathbf{W}_1^{(v)},\mathbf{W}_2^{(v)},\cdots,\mathbf{W}_N^{(v)}]\in \mathbb{R}^{M\times M\times N},v \in [1 : V]

        ②Embedding function:

\min_{\mathbf{H}^{(v)},\mathbf{F}^{(v)}}\sum_{v=1}^V||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{H}^{(v)},\mathbf{F}^{(v)}]]||_F^2

where \mathbf{H}^{(v)}\in\mathbb{R}^{M\times R} and \mathbf{F}^{(v)}\in\mathbb{R}^{N\times R} calculated by CP factorization:

        ③Common embedding learning:

\min_{\mathbf{F}^*}\sum_{v=1}^V\lambda_v||\mathbf{F}^{(v)}-\mathbf{F}^*||_F^2

        ④Combining them to optimize M2E:

\begin{aligned}\mathcal{O}&=\min_{\mathbf{H}^{(v)},\mathbf{F}^{*},\mathbf{F}^{(v)}}\sum_{v=1}^{V}||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{H}^{(v)},\mathbf{F}^{(v)}]]||_{F}^{2}\\&+\sum_{v=1}^{V}\lambda_{v}||\mathbf{F}^{(v)}-\mathbf{F}^{*}||_{F}^{2}\end{aligned}

where the first term is for minimize the dependence of multi-graphs and the second is for multi-views

2.5.3. Optimization framework

        ①Parameter needs estimate: \mathbf{H}^{(v)}\in\mathbb{R}^{M\times R}\mathbf{F }^{(v)}\in\mathbb{R}^{N\times R}, and \mathbf{F}^{*}\in\mathbb{R}^{N\times R}. Due to they are not convex, no closed-form adopted. Then they introduced an iteration method, Alternating Direction Method of Multipliers (ADMM) approach.

        ②They use variable substitution technique, fixing \mathbf{F }^{(v)} and \mathbf{F}^{*}, compute \mathbf{H}^{(v)}:

\begin{aligned}&\min_{\mathbf{H}^{(v)},\mathbf{P}^{(v)}}||\mathcal{X}^{(v)}-[[\mathbf{H}^{(v)},\mathbf{P}^{(v)},\mathbf{F}^{(v)}]]||_{F}^{2}\\&s.t. \mathbf{H}^{(v)}= \mathbf{P}^{(v)}\end{aligned}

the Lagragian function:

\mathcal{L}(\mathbf{H}^{(v)},\mathbf{P}^{(v)})=\|\mathcal{X}^{(v)}-[\mathbf{H}^{(v)},\mathbf{P}^{(v)},\mathbf{F}^{(v)}]\|_{F}^{2}\\+tr(\mathbf{U}^{(v)T}(\mathbf{H}^{(v)}-\mathbf{P}^{(v)}))+\frac{\mu}{2}\|\mathbf{H}^{(v)}-\mathbf{P}^{(v)}\|_{F}^{2}

where \mathbf{U}^{(v)}\in\mathbb{R}^{M\times R} denotes Lagrange multipliers, \mu denotes penalty parameter. Optimization problem:

\min_{\mathbf{H}^{(v)}}||\mathbf{X}_{(1)}^{(v)}-\mathbf{H}^{(v)}\mathbf{D}^{(v)\text{T}}||_F^2+\frac{\mu}{2}||\mathbf{H}^{(v)}-\mathbf{P}^{(v)}+\frac{1}{\mu}\mathbf{U}^{(v)}||_F^2

they transfer \mathcal{X}^{(v)} to \mathbf{X}_{(1)}^{(v)}\in\mathbb{R}^{M\times(MN)}, and define \mathbf{D}^{(v)}=\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)}\in\mathbb{R}^{(NM)\times R}

. Further changing the minimizing function:

\min_{\mathbf{H}^{(v)}}tr(\mathbf{H}^{(v)}\mathbf{A}^{(v)}\mathbf{H}^{(v)^{\mathrm{T}}})-tr(\mathbf{B}^{(v)^{\mathrm{T}}}\mathbf{H}^{(v)})

where \mathbf{A}^{(v)}=\mathbf{D}^{(v)^{\mathrm{T}}}\mathbf{D}^{(v)}+\frac{\mu}{2}\mathbf{I} and \mathbf{B}^{(v)}=2\mathbf{X}_{(1)}^{(v)}\mathbf{D}^{(v)}+\mu\mathbf{P}^{(v)}-\mathbf{U}^{(v)}. Solving it by update \mathbf{H}^{(v)}

\mathbf{H}_{t+1}^{(v)}\leftarrow\mathbf{H}_t^{(v)}-\frac1{L^{(v)}}(2\mathbf{H}^{(v)^\mathrm{T}}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where L^{(v)} denotes Lipschitz coefficient and equals to the maximum eigenvalue of 2\mathbf{A}^{(v)}. They applied Khatri-Rao product to calculate \mathbf{D}^{(v)^\mathrm{T}}\mathbf{D}^{(v)}:

\begin{aligned} \mathbf{D}^{(v)^{\mathrm{T}}}\mathbf{D}^{(v)}& =(\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)^{\mathrm{T}}})(\mathbf{F}^{(v)}\odot\mathbf{P}^{(v)}) \\ &=(\mathbf{F}^{(v)^{\mathrm{T}}}\mathbf{F}^{(v)})*(\mathbf{P}^{(v)^{\mathrm{T}}}\mathbf{P}^{(v)}) \end{aligned}

where \ast denotes Hadamard product. The updating function of \mathrm{P}^{(v)}:

\mathbf{P}_{t+1}^{(v)}\leftarrow\mathbf{P}_t^{(v)}-\frac1{L^{(v)}}(2\mathbf{P}_t^{(v)}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where \mathbf{A}^{(v)}=\mathbf{E}^{(v)^{\mathrm{T}}}\mathbf{E}^{(v)}+\frac\mu2(\mathbf{I})\mathbf{B}^{(v)}=2\mathbf{X}_{(2)}^{(v)}\mathbf{E}^{(v)}+\mu\mathbf{H}^{(v)}+\mathbf{U}^{(v)}\mathbf{E}^{(v)}=\mathbf{F}^{(v)}\odot\mathbf{H}^{(v)}\in\mathbb{R}^{(NM)\times R}. Lastly update \mathrm{U}(v):

\mathbf{U}_t^{(v)}\leftarrow\mathbf{U}_t^{(v)}+\mu(\mathbf{H}^{(v)}-\mathbf{P}^{(v)})

        ③Then they fix \mathbf{F}^{*} and \mathbf{H}^{(v)} to compute \mathbf{F }^{(v)} by minimize:

\min_{\mathbf{F}^{(v)}} ||\mathbf{X}_{(3)}^{(v)}-\mathbf{F}^{(v)}\mathbf{J}^{(v)^{\mathrm{T}}}||_{F}^{2}+\lambda_{(v)}||\mathbf{F}^{(v)}-\mathbf{F}^{*}||_{F}^{2}

where \mathbf{J}^{(v)}=\mathbf{P}^{(v)}\odot\mathbf{H}^{(v)}\in\mathbb{R}^{(MM)\times R}. The updating function of \mathbf{F }^{(v)}:

\mathbf{F}_{t+1}^{(v)}\leftarrow\mathbf{F}_t^{(v)}-\frac{1}{L^{(v)}}(2\mathbf{F}_t^{(v)}\mathbf{A}^{(v)}-\mathbf{B}^{(v)})

where \mathbf{A}^{(v)} = \mathbf{J}^{(v)^\mathrm{T}}\mathbf{J}^{(v)} + \lambda_{(v)}(\mathbf{I})\mathbf{B}^{v} = 2\mathbf{X}_{(3)}^{(v)}\mathbf{J}^{(v)} +2\lambda_{(v)}\mathbf{F}^*

        ④Finally, they fix \mathbf{H}^{(v)} and \mathbf{F }^{(v)} to minimize {\mathcal{O}} over \mathbf{F}^{*}:

\mathbf{F}^*=\frac{\sum_{v=1}^V\lambda_{(v)}\mathbf{F}^{(v)}}{\sum_{v=1}^V\lambda_{(v)}}

        ⑤Overall time complexity: 

O(MaxIter(R^{3}+R^{2}(2M+N+1)+(M^{2}N+M+NV)R)V)

2.6. Experiments and evaluation

2.6.1. Data collection and preprocessing

(1)Human Immunodeficiency Virus Infection (HIV)

        ①Sample: randomly select 35 patients and 35 controls from dataset due to the data imbalance

        ②Atlas: AAL 90

(2)Bipolar Disorder (BP)

        ①Sample: 52 BP and 45 controls

        ②Atlas: self-generated 82 regions

euthymia  n. 情感正常

2.6.2. Baselines and metrics

        ①Introducing compared models

        ②Grid search for hyper-parameters: \lambda _1,\lambda _2\in\{10^{-4},10^{-2},...,10^{4}\}R form \{1,2,...,20\}

2.6.3. Clustering results

        ①Performance comparison table:

2.6.4. Parameter sensitivity analysis

        ①Ablation on \lambda:

        ②Ablation on R:

2.6.5. Factor analysis

        ①The activity intensity of the brain region and the embedded feature \mathbf{F }^{(v)}:

2.7. Conclusion

        They design a novel multi-view multi-graph embedding framework based on partially-symmetric tensor factorization

3. 知识补充

3.1. 偏对称张量

(1)定义:偏对称张量是指张量中的某些分量在特定的下标重排后,其值保持不变。这种性质与张量的对称性有关,但与完全对称的张量(即所有下标重排后元素都相等的张量)不同,偏对称张量只要求部分下标重排后元素相等。

(2)示例:以三阶张量为例,如果满足以下条件之一或多个,则可以称为偏对称张量:

        ①x_{ijk}=x_{jik}(第一个和第二个下标互换)

        ②x_{ijk}=x_{kji}(第一个和第三个下标互换)

        ③x_{ijk}=x_{jik}=x_{kij}(同时满足前两个条件)

4. Reference

Liu, Y. et al. (2018) 'Multi-View Multi-Graph Embedding for Brain Network Clustering Analysis', AAAI. doi: https://doi.org/10.48550/arXiv.1806.07703

相关内容

热门资讯

第二分钟了解!创思维app有挂... 第二分钟了解!创思维app有挂吗,广东雀神麻雀控制器(总是真的有挂)一、广东雀神麻雀控制器软件透明挂...
透视黑科技!wepoker辅助... 透视黑科技!wepoker辅助是真的假的(透视)永久脚本辅助器(详细辅助2025新版)1)wepok...
透视黑科技"哈糖大菠... 透视黑科技"哈糖大菠萝能开挂吗"详细辅助2025教程(原来真的是有挂);1、下载好哈糖大菠萝能开挂吗...
透视了解!哈糖大菠萝挂(透视)... 透视了解!哈糖大菠萝挂(透视)好像有挂(详细辅助2025教程)1、很好的工具软件,可以解锁游戏的ai...
第9分钟了解!皇豪互娱科技软件... 第9分钟了解!皇豪互娱科技软件,赣牌圈充钱有好牌吗(果然有挂)赣牌圈充钱有好牌吗辅助器中分为三种模型...
透视科技!哈糖大菠萝破解器(透... 透视科技!哈糖大菠萝破解器(透视)永久脚本辅助app(详细辅助攻略教程)1、每一步都需要思考,不同水...
透视好友"hhpok... 透视好友"hhpoker底牌透视脚本"详细辅助AI教程(一直是有挂);该软件可以轻松地帮助玩家将hh...
透视苹果版!wepoker公共... 透视苹果版!wepoker公共底牌(透视)其实真的有挂(详细辅助详细教程)辅助器中分为三种模型:软件...
十分钟了解!决战卡五星开挂方法... 十分钟了解!决战卡五星开挂方法,微信小程序功夫川破解版(切实有挂)1、微信小程序功夫川破解版系统规律...
透视真的!pokermaste... 透视真的!pokermaster修改器(透视)永久脚本辅助器(详细辅助新版2025教程)1、下载好p...