本篇文章给大家谈谈 岩样的材料强度及缺陷程度 ,以及 岩石的三轴抗压强度与哪些因素有关? 对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。今天给各位分享 岩样的材料强度及缺陷程度 的知识,其中也会对 岩石的三轴抗压强度与哪些因素有关? 进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
1.抗压强度 岩石的抗压强度就是岩石试件在单轴压力下达到破坏的极限值,它在数值上等于破坏时的最大压应力。岩石的抗压强度一般是在实验室内用压力机进行加压试验测定的,试件通常采用圆柱形(钻探岩心)或立方柱状(用岩块加工入试件的
岩样强度是由破坏试验得到的,一个岩样只能得到一个围压下的强度,围压变化岩样也发生变化,而岩石内部缺陷可能引起试样强度的离散性,有时围压升高岩样的强度反而降低。例如徐州石英砂岩在围压为10MPa时,岩样强度为223MPa;
又岩样实际的单轴压缩强度远低于σ0,以及从Coulomb准则得到的粘聚力远低于c0,表明岩石内部确实存在大量的裂隙。这些裂隙的摩擦承载能力在低围压时低于颗粒之间的粘结强度,因而在材料丧失粘聚力之前摩擦力易于达到极限值。试样
其强度和硬度主要取决于其矿物成分和结晶程度。一般来说,岩浆岩的矿物成分含量越高,结晶程度越好,其强度和硬度就越高。例如,花岗岩等岩浆岩类岩石具有较高的强度和硬度,而玄武岩等喷出岩的强度和硬度则相对较低。沉积岩
岩样实际强度σS低于理想值 时,就是由于岩样内部材料存在强度缺陷,或者说是由于岩样的材料强度σm低于理想的材料强度 。岩样的理想材料强度和实际材料强度定义为 岩石的力学性质 σm=σs-Kσ3 (3.14)岩样的理想
岩样的材料强度及缺陷程度
岩石抗拉伸强度,岩石属脆性材料,其抗拉强度很小,抗弯强度次之,抗剪强度稍大,抗压强度最大。
1、能力不同 抗拉强度是抵抗最大变形的能力,屈服强度是抵抗起始变形的能力。2、获取形式不同 抗拉强度是通过单向拉伸试验获得的金属材料力学性能指标。屈服强度是通过对金属材料施压来获得金属材料力学性能指标。3、性质不同
性质不同,两个之间不能换算。抗拉强度是金属由均匀塑性形变向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力,抗压强度是指外力施压力时的强度极限,抗拉强度:σ=Fb/So,抗压强度:p=P/A。抗拉强度
因为受力点和受力面积不同。抗压能力受力点是一个面,压力会分散。而抗拉能力的受力面积是一个点,受力比较集中。所以抗压能力大于抗拉能力。脆性材料的韧性低,塑性低,相对低于他的硬度和刚度低很多。强度高,所以他的抗
为什么岩石的抗压强度强于抗拉强度
抗冲击强度与抗压强度之间的关系是复杂的,之间的比值称为岩石的剪切强度比。岩石的剪切强度比通常在01到0.3之间,这意味着岩石的抗剪强度通常是抗压强度的10%到30%。这是因为岩石在受到压力作用下,其内部的应力状态是三
1、抗压强度:通常以每平方公分多少公斤,或每平方英寸多少磅。换言之,它指把岩石的加压至破裂所需要的应力。 欲想了解石材的特性,和在工程上是否适用时,必须先作岩石的力学强度试验。强度试验中最主要为抗压强度的试验。
岩石抗压强度是岩石物理力学性质之一。岩石抗压强度指团柱状或方柱状岩石试件在单轴压力作用下被破坏时,试件横断面上的平均压应力。岩石的抗压强度受试件断面形状和试件尺寸的影响。断面为方形时抗压强度比断面为圆形时略低
不应小于1.5。岩石的抗压强度与混凝土强度等级之比,对于大于或等于C30的混凝土,不应小于2.0,其他不应小于1.5,且火成岩强度不宜低于80MPa,变质岩不宜低于60MPa,水成岩不宜低于30MPa。
岩石的抗压强度一般是在实验室内用压力机进行加压试验测定的,试件通常采用圆柱形(钻探岩心)或立方柱状(用岩块加工入试件的断面尺寸,圆柱形试件采用直径D=5cm,也有采用D=7cm的;立方柱状试伴,采用5cm×5cm或7cm×7cm)。试件的高度h
岩石的最大抗压强度的量测,通常是在固定的实验室中进行,并利用功率为十至一百吨以上的特殊水压机来把测试样本压碎。为测试岩石的抗压强度,其样品需制成立方体或圆柱体的形状,同时其尺寸还得视岩石的不同而异。对高强度
要求如下:1、岩石的抗压强度(水饱和状态)与混凝土强度等级之比应不小于1.5。2、火成岩的抗压强度不宜低于80MPa。3、变质岩的抗压强度不宜低于60MPa。4、水成岩的抗压强度不宜低于30MPa。
岩石抗压强度
由于剪应力的存在,混凝土抗压强度低于单向;由于压应力存在,混凝土抗剪强度有限增加。混凝土处于三向受压状态时,裂缝开裂延迟,破坏延迟,因此测得的抗压强度会提高很多,即轴心抗压强度要高于单轴向的轴心抗压强度。
双向受拉强度接近于单向受拉强度;当混凝土处于一向受压、一向受拉时,一向的强度随另一向应力的增加而降低。当混凝土处于三向受压时,各个方向上的抗压强度都有很大的提高。三向受压力作用下,混凝土的侧向压力约束了混凝土受
岩石的三轴抗压强度大。根据莫尔圆可知,σ1=σ3tan2(45+-φ/2)+2ctan(45+--φ/2).第一个tan后的2为平方。+-表示加或减。单轴压缩时,σ3=0,此时σ1最小了。三轴抗压强度大于单轴抗压强度。
第2阶段体应变继续增大,试件体积继续减小,试件内部的微裂隙或节理面被压密实闭合后,应力与纵向应变曲线近似于直线,但各曲线性部分长度不同,这是岩石中微裂隙或节理面的宽度不一样产生的,使得闭合程度不同。第3阶段岩石内
三轴抗压强度和单轴抗压强度比较三轴抗压强度大。根据查询相关资料信息显示,三轴抗压强度在岩土试件在三向压力作用下,相应于一定
基岩三轴抗压强度试验和单轴抗压试验区别
当荷载继续增加,岩样进入破坏阶段时,由于岩石试样已经达到了承载极限,其内部裂纹连接、贯通已发展为宏观裂纹,从而使得岩样的整体失去了承载能力。5.3.2 加温后花岗岩三轴抗压强度、弹性模量与围压的关系 由图5.6可知,在
1、水泥强度和水灰比。水泥强度和水灰比是影响混凝土抗压强度的主要因素,因为混凝土抗压强度主要取决于水泥凝胶与骨料间的粘结力。2、粗骨料。粗骨料如果含有大量的软弱颗粒、针片状颗粒、含泥量、泥块含量、有机质含量、
岩石的结构与缺陷也对岩石的强度有影响。工艺技术因素方面包括:岩石的受载方式不同,相同岩石的强度不同;岩石的应力状态不同,相同岩石的强度差别也很大;此外还有外载作用的速度、液体介质性质等。
第一、力值传感器 因为传感器的好坏决定了试验机的精度和测力稳定性,岩石三轴试验机上使用的轴向力传感器为大力值轮辐式传感器。如果传感器内部的应变片精度不高或固定应变片用的胶抗老化能力不好,再或者传感器的材料不好都
如石灰岩和砂岩被水饱和后,其极限抗压强度会降低25%~45%左右。5.风化 风化作用过程能使岩石的结构、构造和整体性遭到破坏,空隙度增大、容重减小,吸水性和透水性显著增高,强度和稳定性大为降低。随着化学过程的加强,
影响岩石抗压强度的因素很多,其最重要的有三种因素:组织、胶结物的性质、压力的方向等。(1) 组织以结晶粒子大小而言,一些细粒的岩石或隐晶质的岩石,其抗压强度往往要较粗粒为大。例如细粒的砂岩,其抗压强度便要较粗
与密度、毛体积密度和孔隙率包括(开口与闭口孔隙率)有关。岩体在三向受压状态下所能承受的最大压应力,称为岩体三轴抗压强度。原位岩体三轴压缩试验的开展,有益于更好地评价岩体的各向异性。岩体内任一方向切面在任一法向
岩石的三轴抗压强度与哪些因素有关?
岩石强度包括抗压、抗拉、抗剪(断)强度及岩石破坏、断裂的机理和强度准则。室内用压力机、直剪仪、扭转仪及三轴仪,现场做直剪试验和三轴试验,以确定强度参数(凝聚力和内摩擦角)。强度准则大多采用库伦-纳维准则。这个
岩石的力学指标主要有抗压强度、抗剪强度和弹性模量及变形模量等等。关于强度主要关注抗剪强度,岩石的抗剪强度和变形模量受到很多复杂因素影响,影响的规律也较复杂,一般受岩石的类型、完整性、风化程度及含水条件等诸多因素的
强度指岩石在力的作用下出现屈服或破裂时承受的最大应力。岩石处于地下深处,承受着周围岩体对它施加的围压作用、地下热量对其的加热作用、地下流体对其的物理和化学作用以及时间因素的作用等。所有这些因素在很大程度上可改变岩石的力学表现。
透水性、溶解性、软化性和抗冻性;岩石的力学性质则包括岩石的强度指标即抗压强度、抗拉强度、抗剪强度(抗剪断强度、抗剪强度、抗切强度)和岩石的变形指标(弹性模量、变形模量、泊松比)。
岩石的三种力学强度指的分别是什么?
①岩石的变形
岩石受力作用会产生变形,在弹性变形范围内用弹性模量和泊桑(松)比两个指标表示。弹性模量是应力与应变之比,以“帕斯卡”为单位,用符号Pa表示。相同受力条件下,岩石的弹性模量越大,变形越小。即弹性模量越大,岩石抵抗变形的能力越强。泊松比是横向应变与纵向应变的比。泊桑(松)比越大,表示岩石受力作用后的横向变形越大。
岩石并不是理想的弹性体,岩石变形特性的物理量也不是一个常数。通常所提供的弹性模量和泊桑(松)比,只是在一定条件下的平均值。
②岩石的强度
岩石的强度是岩石抵抗外力破坏的能力,也以“帕斯卡”为单位,用符号Pa表示。岩石受力作用破坏,表现为压碎、拉断和剪切等,故有抗压强度、抗拉强度和抗剪强度等。
a.抗压强度。抗压强度是岩石在单向压力作用下抵抗压碎破坏的能力,是岩石最基本最常用的力学指标。在数值上等于岩石受压达到破坏时的极限应力。抗压强度主要与岩石的结构、构造、风化程度和含水情况等有关,也受岩石的矿物成分和生成条件的影响。
所以,岩石的抗压强度相差很大,胶结不良的砾岩和软弱页岩小于20MPa,坚硬岩浆岩大于245MPa.
b.抗拉强度。抗拉强度是岩石抵抗拉伸破坏的能力,在数值上等于岩石单向拉伸破坏时的最大张应力。岩石的抗拉强度远小于抗压强度,故当岩层受到挤压形成褶皱时,常在弯曲变形较大的部位受拉破坏,产生张性裂隙。
c.抗剪强度。抗剪强度是指岩石抵抗剪切破坏的能力,在数值上等于岩石受剪破坏时的极限剪应力。在一定压应力下岩石剪断时,剪破面上的最大剪应力,称为抗剪断强度,其值一般都比较高。抗剪强度是沿岩石裂隙或软弱面等发生剪切滑动时的指标,其强度远远低于抗剪断强度。
三项强度中,岩石的抗压强度最高,抗剪强度居中,抗拉强度最小。抗剪强度约为抗压强度的10%~40%,抗拉强度仅是抗压强度的2%~16%.岩石越坚硬,其值相差越大,软弱岩石的差别较小。岩石的抗压强度和抗剪强度,是评价岩石(岩体)稳定性的主要指标,是对岩石(岩体)的稳定性进行定量分析的依据之一。
经过材料力学实验证明,岩石与其他固体物质一样,在受力变形过程中,应力σ与应变ε之间存在着一定的关系。若以应力σ为纵坐标,应变ε为横坐标,则可得到应力应变曲线(图3-9)。分析应力 应变曲线的特征,通常将岩石受力变形过程依次划分出弹性变形、塑性变形和断裂变形等三个阶段。岩石的三个变形阶段是依次发生的,不是截然分开,而是彼此过渡的。由于岩石的力学性质不同,不同岩石的各个变形阶段的长短和特点也各不相同。
1.弹性变形
图3-9 塑性材料(低碳钢)做拉伸实验时的应力-应变曲线(据孙超,1990)
物体在外力作用下发生变形,当外力解除后,能完全恢复其原状的变形称为弹性变形。如图3-9,当超过B点时,即使去掉外力,岩石也不会再完全恢复到变形前的状态。所以,B点的应力值σb称为弹性极限,OB称为弹性变形阶段。OA呈直线,说明应力σ与应变ε成正比,符合胡克定律。OA的斜率为:
tanθ=σ/ε=E
E值称为弹性模量。不同力学性质的岩石,E值是不相同的。AB为一条曲线,应力σ与应变ε不能用胡克定律表示,但是,当外力去掉后,岩石仍然可完全恢复到变形前状态,所以仍为弹性变形阶段。
从微观角度看,岩石变形是由组成它们的质点受力发生位移,而导致岩石的形态或体积改变,同时质点的位移要吸收一定的位能,在短期内,外力解除后,这种位能又发挥作用,使质点部分或全部恢复其原来的位置,即弹性恢复或弹性回跳。地震冲击波的传播就使地壳内的岩石具有弹性变形的表征。
2.塑性变形
随着外力的继续增加,变形相继增大,当应力超过岩石的弹性极限后,即使将应力解除,岩石也不能完全恢复其原来的形状,但是岩石没有失去连续完整性,这种变形称为塑性变形或称永久变形。如图3-9所示,当超过E点时,岩石就会发生破裂,失去连续完整性。所以,E点称为破裂点,其应力值σE称为强度极限或破裂极限;BE称为塑性变形阶段。
在BE塑性变形阶段中,曲线呈反S形。其中,当超过C点时,曲线变成水平状态,说明在没有增加外力的情况下变形仍然显著增加,也就说明岩石抵抗变形的能力很弱,这种现象称为屈服或塑性流变。C点为屈服点,其应力值σc称为屈服极限。当超过D点后,随应力的增加,曲线弯曲向上,说明岩石在塑性变形的最后阶段DE内会不断地受到强化,因而又重新产生不断增长的抵抗变形的能力.
岩石发生塑性变形的原因:从岩石本身性质来讲,受力岩石在塑性变形阶段内部质点发生位移,在新的位置上达到了新的平衡。当去掉外力作用后,岩石内部质点不再恢复到原来的位置。表现在岩石的外貌虽然变了形,但内部质点仍然存在着结合力而连接在一起,使岩石仍然保持着连续完整性。
岩石内部质点的位移,可以发生在矿物颗粒之间的滑动或矿物颗粒内部的滑动。粒间滑动是指发生在矿物颗粒之间的软弱界面上滑动,矿物颗粒本身的大小和形态未发生改变;粒内滑动是指矿物颗粒内部的质点产生平移滑动或双晶滑动(图3-
G.L.泰勒(Taylor,1934)等人认为塑性变形是由于线状晶格缺陷即位错沿滑移面的运动引起的。晶格中某一点上原子排列周期性的缺陷称为点缺陷;如果,晶格内原子排列周期性的缺陷出现在一条线上时,则形成线缺陷,这种缺陷(图3-11B之CD)与晶体滑动方向垂直者称刃性位错(图3-11B),当晶面ABCD沿晶格两侧发生位移,则形成螺形位错(图3-11C),其位错线(图3-11C之CD)与滑动方向平行。
图3-10 岩石塑性变形时的双晶滑动
A—滑动前的状态;B—沿g1g1、g2g2……发生滑动的原子排列状态
3.断裂变形
当作用的外力,超过岩石的强度极限时,岩石内部的质点间的结合力就会遭到破坏而产生破裂面,使岩石失去连续完整性,即称为断裂变形或脆性变形。如图3-9所示,当超过E点后曲线急剧下降,说明岩石失去了抵抗变形的能力,达到被破坏的程度。对韧性较强的岩石,当所受的张应力超过强度极限σE时,会出现细颈化现象。随着细颈化现象的出现,岩石表现为所受应力迅速减小,变形急剧发展且直到变形曲线上的K点时,才在细颈化处被拉断。EK区间乃为局部塑性变形。
图3-11 理想完好的晶格(A)、刃型位错(B)和螺型位错(C)
岩石的变形与岩石的力学性质有密切的关系,影响岩石变形的力学性质主要表现在岩石的脆性或韧性方面。岩石受力后,若在破裂前只有很小的塑性变形(应变量<5%),称为岩石的脆性,脆性强的岩石,受力后很快就会发生破裂;岩石受力后,若在破裂前能承受较大的变形(应变量>10%)而不失去连续完整性时,称为岩石的韧性,韧性强的岩石,不易被拉断、剪断或折断。岩石在地表条件下一般表现为脆性,但随着围压、温度及变形速率等条件的变化可以转化为韧性。
岩石的强度是岩石抵御外力破坏的能力,依据抵抗造成岩石破坏的应力性质,岩石的强度可分为,抗压强度、抗拉(张)强度和抗剪强度。其中的抗拉强度储集层岩石中极少用到,故这里主要介绍另外两种。
1.抗压强度
岩石的抗压强度就是岩石试件在单轴压力下达到破坏的极限值,它在数值上等于破坏时的最大压应力。岩石的抗压强度一般是在实验室内用压力机进行加压试验测定的,试件通常采用圆柱形(钻探岩心)或立方柱状(用岩块加工入试件的断面尺寸,圆柱形试件采用直径D=5cm,也有采用D=7cm的;立方柱状试伴,采用5cm×5cm或7cm×7cm)。试件的高度h应当满足下列条件:
储层岩石物理学
这里D为试件的横断面直径;A为试件的横断面积。
试验结果按下式计算抗压强度:
储层岩石物理学
其中:Rc为岩石单轴抗压强度;Pc为岩石试件破坏时所加的轴向压力;S为岩石试件横断面面积。
2.抗剪强度
岩石抗剪强度是指岩石抵抗剪切破坏或滑动的极限强度,以岩石被剪破或滑动时的极限应力表示。岩石抗剪强度是需要研究的岩石最重要工程力学特性之一,往往比岩石抗压强度及抗拉强度更有意义。岩石抗剪强度的力学指标为内聚力c和内摩擦角φ,通过各种岩石剪切实验进行测定。在垂直压力P作用下,并且在水平方向施加剪应力T,直到岩石试件被剪破为止,此时剪切面上正应力σ及剪应力τ分别为
储层岩石物理学
式中:P,T分别为试件开始沿着先存剪切面发生滑动时所施加的最大垂直压力、最大水平剪切力;S为剪切面面积。
为了密切工程实际,可以将岩石抗剪强度进一步划分为三种类型,即抗剪断强度、抗剪强度及抗切强度等。
(1)抗剪断强度
抗剪断强度是在垂直压力P作用下,并且在水平方向施加剪应力T,直到试件被剪断为止,此时根据莫尔-库仑强度理论,岩石抗剪断强度τf为
储层岩石物理学
(2)抗剪强度
抗剪强度是岩石试件具有先存剪切面(节理面或裂缝面)时,在垂直压力P作用下,并且在水平方向施加剪切力T直到试件发生剪切滑动为止。此时,岩石抗剪强度τf为
储层岩石物理学
(3)抗切强度
抗切强度是没有垂直压力作用的条件下,而在水平方向施加剪切力T直到岩石试件剪断为止。此时,剪切面上无正应力,仅有剪应力T,则剪切应力
储层岩石物理学
式中:T为岩石试件剪断时所施加的最大水平剪切力;S为先存剪切面面积。按莫尔强度理论,抗剪强度定义为
储层岩石物理学
岩石抗剪强度实验及计算式子也可以用于确定岩体中软弱结构面的抗剪强度。
3.破裂准则所谓破裂准则就是岩石发生破裂的条件,假定岩石处于(σ1,σ2,σ3)的应力状态时发生了破裂,我们把σ1,σ2,σ3之间的关系σ1=f(σ2,σ3)称为破裂准则。下面详细讨论几种常见破坏形式和破裂准则。储集岩石处于地下,主应力一般都是压性的,主要发生剪破裂,故一般讨论剪切破裂问题较多。但在水力压裂条件下,岩石中的孔隙压力足够大,张性压裂一样有可能发生。
(1)库仑莫尔破裂准则
这是岩石力学中应用最广泛的强度理论,它认为,当某一面上剪切应力超过其所能承受的极限剪应力τ值时,岩石便破坏。法国物理学家库仑在1781年运用物体滑动时摩擦力和法向压力的正比关系求解平衡问题,得到库仑摩擦定律。岩石破裂的实验结果,可以用与摩擦公式相似的简单关系表示,称为库仑破裂准则:
若岩石内部某平面上的正应力σ和剪切力τ满足条件τ=c+μσ,则该面将发生破裂,式中c称作岩石的内聚力或聚合强度(Cohension);μ称为内摩擦系数,工程上常令μ=tanφ,φ称内摩擦角。图3-7所示为库仑破裂准则的图解,剪切力τ增大到一定程度,岩石破裂;如果正应力σ较大,内摩擦力增大,需要更大的剪切力τ使岩石破裂。
莫尔在1882年引入莫尔圆来显示材料内部的应力状态(Timoshenko,1970),能够直观地表现破裂准则,图3-8是当极限平衡状态下的莫尔圆。
图3-7 库仑准则示意图
图3-8 极限平衡状态下的莫尔圆
首先考虑平面问题,如图3-9a所示,在岩体中任取一单元体,设作用在该微小单元体上的两个主应力为σ1和σ3(σ1>σ3),在微单元体内与最大主应力σ1作用面成任意角度α的mn平面上有正应力σ和剪应力τ。为了建立σ,τ和σ1,σ3之间的关系,取微棱柱体abc为隔离体,如图3-9b所示。
图3-9 库仑莫尔圆
将各个力分别在水平和垂直方向投影,根据静力平衡条件可得
储层岩石物理学
以上两方程联立,求得mn平面上的应力为
储层岩石物理学
以上σ,τ和σ1,σ3之间的关系可以用库仑-莫尔应力圆表示,如图3-9c所示。在στ直角坐标系中,按一定的比例,沿σ轴截取OB和OC分别表示σ3和σ1,以D为圆心,(σ1σ3)为直径作圆,从DC开始逆时针旋转2α角,得到DA线,其与圆周交于A点。从式(3-17)可知,图中A点的横坐标就是mn平面上的正应力σ,纵坐标就是剪应力τ。因此,库仑-莫尔圆可以表示岩石中一点的应力状态,圆周上各点的坐标就是该点在相应平面上的正应力和剪应力。这样,莫尔圆既可给出破裂发生时剪应力τ与正应力σ的具体数值,又可以表现出破裂发生的方向。
莫尔于1900年提出,当一个面上的剪应力τ与正应力σ之间满足某种函数关系数,即
储层岩石物理学
沿该面会发生破裂,这就是莫尔破裂准则,其中函数f的形式与岩石种类有关。这样,莫尔就把库仑准则一般化了。因为库仑准则在στ平面上代表一条直线,而莫尔准则代表στ平面上的一条曲线。该曲线常被称为破裂线,也有的书称其为强度线。莫尔的另一个贡献是,将库仑莫尔圆扩展到三维,做法为:在τσ平面上,莫尔圆以(σ1σ3)为直径,破裂线AB与该大圆相切则发生破裂,破裂面与最大主应力σ1方向的夹角为(π/2β),中等主应力σ2的大小对破裂发生条件及破裂面方位没有影响。利用三维莫尔圆,可以得出岩石内部任意平面上的法向应力与切向应力。做法是,根据研究平面与最大应力方向的夹角φ和其与最小主应力方向的夹角θ,在σ1和σ2构成的小圆内作出一条与σ轴成2φ角的半径(在本例中φ=30°,2φ=60°),在σ3和σ2构成的小圆内作一条与σ轴成2θ角的半径(在本例中2θ=75°),根据这两条半径分别与其圆周相交点的刻度,确定交点P,P点的纵、横坐标就是该平面上的切应力τ和正应力σ,如图3-10所示。
图3-10 三维莫尔圆
当τ=f(σ)为直线时,其与库仑准则是一致的,被称为库仑-莫尔准则,或库仑-莫尔强度线;实验表明,当岩石较软弱时,其强度曲线近似于抛物线形,此时莫尔破裂准则表为τ2=σt(σ+σt),其中σt为岩石单轴抗拉强度,当τ2≥σt(σ+σt)时,岩石破裂;当岩石较坚硬时,强度曲线近似于双曲线型,可表为τ2=(σ+σt)2tanη+(σ+σt)σt,其破坏判据为τ2≥(σ+σt)2tanη+(σ+σt)σt,其中 ,σc为单轴抗压强度。
(2)格利菲斯强度理论
莫尔强度理论将材料看作完整而连续的均匀介质,可实际上任何材料内部都会存在许多细微裂纹或裂隙,在应力作用下,这些裂隙周围(尤其在裂隙端部)将产生较大的应力集中,有时由于集中在局部产生的应力可以达到所加应力的100倍,故材料破坏主要取决于内部裂隙周围应力状态,材料的破坏往往从裂隙端部开始,并通过裂隙扩展而导致完全破坏。1920年,格里菲斯(Griffith)的经典论文使断裂力学研究取得了突破。格里菲斯考虑固体中受应力作用的一条孤立裂缝,根据经典力学和热力学的基本能量理论,提出了
裂纹扩散理论。在外力作用下,由材料内部应力集中而聚集起来的弹性势能大于使之沿裂隙扩展所做的功时,材料便沿裂隙开裂。如图3-11所示,材料内部原有一条长度为L的裂隙,在弹性势能U作用下产生长度为ΔL的裂隙扩展,释放的弹性势能为ΔU,则能量释放率(能量梯度,也称裂隙扩展p)G为
储层岩石物理学
裂隙扩展长度为ΔL时,所增加的表面能ΔS为
图3-11 裂缝扩展示意图
储层岩石物理学
式中:γ为单位面积(单位线长度)表面能。假定R为表面能增加率或裂隙扩展阻力,则有
储层岩石物理学
可见,只有当G≥R时,裂隙方得以扩展。所以G≥R即为裂隙扩展的能量准则。
下面来研究裂隙扩展的应力准则。
选取裂隙扩展方向为x轴,则y轴垂直于裂隙表面,裂隙端点处的应力为σx,σy和τxy。而裂隙椭圆周边的切向应力σb可以采用弹性力学中的英格里斯(Inglis)公式表示(凌贤长等,2002),可得到裂隙端点最大切应力为
储层岩石物理学
其中m=b/a是裂隙椭圆长半轴与短半轴的比值。必须说明一点,因为裂隙是一个拉长椭圆,裂隙端点的切应力是沿y轴方向的。这样,在σy>0条件下,式(3-22)采用负号方能取得负的σb值,即呈拉应力,当该应力大于σt(岩石单轴抗拉强度),裂隙端点就会出现新的破裂,引起裂隙的扩展。用主应力σ1,σ2和σ3表示σx,σy和τxy,可得到破裂角β(裂缝面与σ1夹角)的表达式
储层岩石物理学
这就要求(σ1-σ3)/2(σ1+σ3)≤1,即σ1+3σ3≥0。如果满足σ1+3σ3≥0条件,可用σy和τxy表示该强度准则 ,或者τ2xy≥4σt(σt-σy)。采用σ1和σ3表示,则为(σ1-σ3)2/(σ1+σ3)≥-8σt,这里出现负号,是因为岩石力学中张应力为负,出现张应力使岩石裂开。为满足上述破裂条件,要求σ1与σ3差别较大,当σ3=0,即单轴应力条件下,cos2β=1/2,于是有2β=60°,故破裂角β=30°;当σ31/2,故β0,这时(σ1-σ3)/2(σ1+σ3)30°,如果σ1和σ3都很大,且岩石强度较小时,cos2β→0,即β→45°。
如果条件σ1+3σ3≥0得不到满足,则意味着岩石处于张应力环境,当σ3≤-σt时,岩石沿垂直于σ3的平面裂开。
如果以一定压力将液体泵入一个完整岩石的钻井中,一旦孔内液体压力大于当地应力场的作用力时,井壁岩石就将承受张应力,这个张应力等于或大于岩石的抗张强度,就会发生张性破裂,这种张性破裂面一定通过最大主应力轴,且垂直于最小主应力轴。
岩石种类 抗压强度(Kg∕㎝2)
花岗岩(Granite) 1,000 2,500
正长岩(Syenite) 1,000 2,000
闪长岩(Diorite) 1,500 2,800
辉长岩(Gabbro) 1,000 2,800
辉绿岩(Diabase) 2,000 3,000
玄武岩(Basalt) 4,000
结晶质石灰岩(Crystalline Limestone) 1,000 2,000
石英砂岩(Quartzose Sandstone) 2,000
石英岩(Quartzite) 3,000
片麻岩(Gneiss) 1,000 2,000
岩石的长期强度是指岩石在长期荷载作用下抵御破坏的强度值,岩石在长期荷载作用下会产生蠕变效应,故而把蠕变强度作为岩石的长期强度。岩石的长期强度受其结构构造及其内部缺陷影响较大,也受成因的复杂影响(沉积岩、火成岩、变质岩),需区别对待。一般岩石的长期强度要通过蠕变实验实现。
实际上,我们在实际应用时,主要考虑岩体的长期强度问题,因为岩体的长期强度是受结构面所控制,结构面强度决定了岩体的长期强度,单纯研究与其原生赋存条件迥异的岩石长期强度问题,无太大重要工程意义,还要考虑其他影响岩石长期强度的环境地质条件(大地构造、地下水、地表水、赋存环境的地质条件的自然和认为改变等)比如泥岩页岩等岩石在结构面导水条件下软化强度减低问题、快速剥蚀条件下结构面发育的岩石快速风化使岩石质量指标恶化问题、人工开挖的高边坡表层的岩块内应力释放的影响等等,此时我们的关注点就转移到结构面长期强度的研究问题上了。
晶体中的缺陷及其对材料性能的影响
前言
晶体的主要特征是其中原子(或分子)的规则排列, 但实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,于是就形成了晶体的缺陷,晶体中缺陷的种类很多,它影响着晶体的力学、 热学、电学、光学等各方面的性质。晶体的缺陷表征对晶体
理想的周期结构的任何形式的偏离。
晶体缺陷的存在,破坏了完美晶体的有序性,引起晶体内能U和熵S增加。按缺陷在空间的几何构型可将缺陷分为点缺陷、线缺陷、面缺陷和体缺陷,它们分别取决于缺陷的延伸范围是零维、一维、二维还是三维来近似描述。每一类缺陷都会对晶体的性能产生很大影响,例如点缺陷会影响晶体的电学、光学和机械性能,线缺陷会严重影响晶体的强度、电性能等。
一、 晶体缺陷的基本类型
点缺陷
1、点缺陷定义
由于晶体中出现填隙原子和杂质原子等等,它们引起晶格周期性的破坏发生在一个或几个晶格常数的限度范围内,这类缺陷统称为点缺陷。这些空位和填隙原子是由热起伏原因所产生的,因此又称为热缺陷。
2、空位、填隙原子和杂质
空位:晶体内部的空格点就是空位。 由于晶体中原子热运动,某些原子振动剧烈而脱离格点跑到表面上,在内部留下了空格点,即空位。
填隙原子:由于晶体中原子的热运动,某些原子振动剧烈而脱离格点进入晶格中的间隙位置,形成了填隙原子。即位于理想晶体中间隙中的原子。
杂质原子:杂质原子是理想晶体中出现的异类原子。
3、几种点缺陷的类型
弗仑克尔缺陷:原子(或离子)在格点平衡位置附近振动,由于非线性的影响,使得当粒子能量大到某一程度时,原子就会脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去。若晶体中的空位与填隙原子的数目相等,这样的热缺陷称为弗仑克尔缺陷。
肖特基缺陷:空位和填隙原子可以成对地产生(弗仑克尔缺陷),也可以在晶体内单独产生。若脱离格点的原子变成填隙原子,经过扩散跑到晶体表面占据正常格点位置,则在晶体内只留下空位,而没有填隙原子,仅由这种空位构成的缺陷称之为肖特基缺陷.形成填隙原子时,原子挤入间隙位置所需的能量比产生肖特基缺陷空位所需的能量大,一般地,当温度不太高时,肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多。
杂质原子:实际晶体中存在某些微量杂质。 一方面是晶体生长过程中引入的;另一方面是有目的地向晶体中掺入的一些微量杂质。当晶体存在杂质原子时,晶体的内能会增加,由于少量的杂质可以分布在数量很大的格点或间隙位置上,使晶体组态熵的变化也很大。因此温度T下,杂质原子的存在也可能使自由能降低。(F=U-TS)当杂质原子取代基质原子占据规则的格点位置时,形成替位式杂质,如图a;若杂质原子占据间隙位置,形成间隙式杂质,如图b
对一定晶体,杂质原子是形成替位式杂质还是间隙式杂质,主要取决于杂质原子与基质原子几何尺寸的的相对大小及其电负性。杂质原子比基质原子小得多时,形成间隙式杂质;替位式杂质在晶体中的溶解度也决定于原子的几何尺寸和化学因素。
色心:色心是一种非化学计量比引起的空位缺陷。该空位能够吸收可见光使原来透明的晶体出现颜色,因而称它们为色心, 最简单的色心是F心。所谓F心是离子晶体中的一个负离子空位束缚一个电子构成的点缺陷。与F心相对的色心是V心。V心和F心在结构上是碱卤晶体中两种最简单的缺陷。
线缺陷
1、线缺陷的定义:
当晶格周期性的破坏发生在晶体内部一条线的周围则称为线缺陷,通常又称之为位错。它是由于应力超过弹性限度而使晶体发生范性形变所产生的,从晶体内部看,它就是晶体的一部分相对于另一部分发生滑移,以致在滑移区的分界线上出现线状缺陷。
2、位错的基本类型:
常见的位错有两种形式:刃位错和螺位错。
刃位错:亦称棱位错。其特点是:原子的滑移方向与位错线的方向相垂直。
螺位错:特点:是原子的滑移方向与位错线平行,且晶体内没有多余的半个晶面。垂直于位错线的各个晶面可以看成由一个晶面以螺旋阶梯的形式构成。当晶体中存在螺位错时,原来的一族平行晶面就变成为以位错线为轴的螺旋面。
螺位错
位错线的特征:
1.滑移区与未滑移区的分界线;
2.位错线附近原子排列失去周期性;
3.位错线附近原子受应力作用强,能量高,位错不是热运动的结果;
4.位错线的几何形状可能很复杂,可能在体内形成闭合线,可能在晶体表面露头,不可能在体内中断。
刃型位错的特点是位错线垂直于滑移矢量b;
螺型位错的特点是位错线平行于滑移矢量b。
b又称为伯格斯(Burgers)矢量,它的模等于滑移方向上的平衡原子间距,它的方向代表滑移方向。
除此之外,还存在位错线于滑移矢量既不平行又不垂直的混合型位错。混合位错的原子排列介于刃型位错和螺型位错之间,可以分解为刃型位错和螺型位错 。
面缺陷
1、面缺陷的定义:
当晶格周期性的破坏发生在晶体内部一个面的周围则称为面缺陷。
2、常见的面缺陷的类型:
层错:是由于晶面堆积顺序发生错乱而引入的面缺陷,又称堆垛层错。
小角晶界:具有完整结构的晶体两部分彼此之间的取向有着小角度θ的倾斜,在角θ里的部分是由少数几个多余的半晶面所组成的过渡区,这个区域称 小角晶界。
体缺陷
在体缺陷中比较重要的是包裹体。包裹体是晶体生长过程中界面所捕获的夹杂物。它可能是晶体原料中某一过量组分形成的固体颗粒,也可能是晶体生产过程中坩埚材料带入的杂质微粒。
二. 晶体缺陷对材料性能的影响
(1)点缺陷对材料性能的影响
晶体中点缺陷的不断无规则运动和空位与间隙原子不断产生与复合是晶体中许多物理过程如扩散、相变等过程的基础。空位是金属晶体结构中固有的点缺陷,空位会与原子交换位置造成原子的热激活运输,空位的迁移直接影响原子的热运输,从而影响材料的电、热、磁等工程性能。晶体中点缺陷的存在一方面造成点阵畸变,使晶体内能升高,增加了晶体热力学不稳定性,另一方面增大了原子排列的混乱程度,改变了周围原子的振动频率。使熵值增大使晶体稳定。矛盾因素使晶体点缺陷在一定温度下有一定平衡数目。在一般情形下,点缺陷主要影响晶体的物理性质,如比容、比热容、电阻率等。
1. 比容:为了在晶体内部产生一个空位,需将该处的原子移到晶体表面上的新原子位置,导致晶体体积增大
2.比热容:由于形成点缺陷需向晶体提供附加的能量(空位生成焓),因而引起附加比热容。
3.电阻率:金属的电阻来源于离子对传导电子的散射。在完整晶体中,电子基本上是在均匀电场中运动,而在有缺陷的晶体中,在缺陷区点阵的周期性被破坏,电场急剧变化,因而对电子产生强烈散射,导致晶体的电阻率增大。
4. 密度的变化:对一般金属,辐照引起体积膨胀,但是效应不明显,一般变化很少超过0.1~0.2%,这种现象可以用弗仑克尔缺陷来描述
5. 电阻:增加电阻,晶体点阵的有序结构被破坏,使原子对自由电子的散射效果提升。一般可以通过电阻分析法莱追踪缺陷浓度的变化.
6.晶体结构:辐照很显著地破坏了合金的有序度,而且一些高温才稳定的相结构可以保持到室温
7.力学性能:辐照引起金属的强化和变脆(注,空位使晶格畸变类似置换原子引起的)。
此外,点缺陷还影响其他物理性质,如扩散系数,内耗,介电常数等,在碱金属的卤化物晶体中,由于杂质或过多的金属离子等点缺陷对可见光的选择性吸收,会使晶体呈现色彩,这种点缺陷称为色心。
(2)线缺陷对材料性能的影响
位错是一种及重要的晶体缺陷,他对金属的塑性变形,强度与断裂有很重要的作用,塑性变形就其原因就是位错的运动,而强化金属材料的基本途径之一就是阻碍位错的运动,另外,位错对金属的扩散、相变等过程也有重要影响。所以深入了解位错的基本性质与行为,对建立金属强化机制将具有重要的理论和实际意义。金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。如果位错运动受到的阻碍较小,则材料强度就会较高。实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对位错的运动具有很强的阻碍作用)、有序化合金、第二相强化、固溶强化等手段使金属的强度增加。以上增加金属强度的根本原理就是想办法阻碍位错的运动。
位错密度取决于材料变性率的大小。 在高形变率荷载下,位错密度持续增大,因为高应变率下材料的动态回复与位错攀岩被限制,因而位错密度增大,材料强度增大,可以等同于降低材料温度。
金属材料的强度与位错在材料受到外力的情况下如何运动有很大的关系。如果位错运动受到的阻碍较小,则材料强度就会较高。实际材料在发生塑性变形时,位错的运动是比较复杂的,位错之间相互反应、位错受到阻碍不断塞积、材料中的溶质原子、第二相等都会阻碍位错运动,从而使材料出现加工硬化。因此,要想增加材料的强度就要通过诸如:细化晶粒(晶粒越细小晶界就越多,晶界对位错的运动具有很强的阻碍作用)、有序化合金、第二相强化、固溶强化等手段使金属的强度增加。以上增加金属强度的根本原理就是想办法阻碍位错的运动。
对金属材料来说,位错密度对材料的韧性,强度等有影响。对于晶体来说,位错密度越大,材料强度越大。对于非晶刚好相反:位错密度正比于自由体积,位错密度越多,强度越低,塑性可能会好。在外力的作用下,金属材料的变形量增大,晶粒破碎和位错密度增加,导致金属的塑性变形抗力迅速增加,对材料的力学性能影响是: 硬度和强度显著升高;塑性和韧性下降,产生所谓的“加工硬化”现象。随着塑性变形程度的增加,晶体对滑移的阻力愈来愈大。从位错理论的角度看,其主要原因是位错运动愈来愈困难。滑移变形的过程就是位错运动的过程,如果位错不易运动,就是材料不易变形,也就是材料强度提高,即产生了硬化。加工硬化现象在生产工艺上有很现实的作用,如拉丝时已通过拉丝模的金属截面积变小,因而作用在这一较小界面积上的单位面积拉力比原来大,但是由于加工硬化。这一段金属可以不继续变形,反而引导拉丝模后面的金属变形,从而才能进行拉拔。
加工硬化对金属材料的使用也是有利的,例如构件在承受负荷时,尽管局部地区负荷超过了屈服强度,金属发生塑性变形,但通过加工硬化,这部分金属可以承受这一负荷而不发生破坏,并把部分负荷转嫁给周围受力较小的金属,从而保证构件的安全。
钢经形变处理后,形变奥氏体中的位错密度大为增加,可形变量愈大,位错密度愈高,金属的抗断强度也随之增高。随着形变程度增加不但位错密度增加而且位错排列方式也会发生变化由于变形温度下,原子有一定的可动性,位错运动也较容易进行,因此在形变过程中及形变后停留时将出现多边化亚结构及位错胞状结构。当亚晶之间的取向差达到几度时,就可像晶界一样,起到阻碍裂纹扩展的作用,由霍尔一派奇公式,晶粒越小则金属强度越大。
(3)面缺陷对材料性能的影响
1. 面缺陷的晶界处点阵畸变大,存在晶界能,晶粒长大与晶界平直化使晶界米面积减小,晶界总能量降低,这两过程通过原子扩散进行,随温度升高与保温时间增长,有利于这两过程的进行。
2. 面缺陷原子排列不规则,常温下晶界对位错运动起阻碍作用,塑性变形抗力提高,晶界有较高的强度和硬度。晶粒越细,材料的强度越高,这就是细晶强化,而高温下刚好相反,高温下晶界又粘滞性,使相邻晶粒产生相对滑动。
3. 面缺陷处原子偏离平衡位置,具有较高的动能,晶界处也有较多缺陷,故晶界处原子的扩散速度比晶内快。
4. 固态相变中,晶界能量较高,且原子活动能力较大,新相易于在晶界处优先形核,原始晶粒越细,晶界越多,新相形核率越大。
5.由于成分偏析和内吸附现象,晶界富集杂质原子情况下,晶界熔点低,加热过程中,温度过高引起晶界熔化与氧化,导致过热现象。
6. 晶界处能量较高,原子处于不稳定状态,及晶界富集杂质原子的缘故,晶界腐蚀速度较快。
(4)缺陷对半导体性能的影响
硅、锗等第4族元素的共价晶体绝对零度时为绝缘体,温度刀·高导电率增加但比金属的小得多,称这种晶体为半导体。晶体呈现半导体性能的根本原因是填满电子的最高能带与导带之间的禁带宽度很窄,温度升高部分电子可以从满带跃迁到导带成为传导电子。晶体的半导体性能决定于禁带宽度以及参与导电的载流子(电子或空穴)数目和它的迁移率。缺陷影响禁带宽度和载流子数目及迁移率,因而对晶体的半导体性能有严重影响。
1. 缺陷对半导体晶体能阶的影响
硅和锗本征半导体的晶体结构为金刚石型。每个原子与四个近邻原子共价结合。杂质原子的引入或空位的形成都改变了参与结合的共价电子数目,影响晶体的能价分布。
有时为了改善本征半导体的性能有意掺入一些三、五族元素形成掺杂半导体;而其他点缺陷如空位或除三,五族以外的别的杂质原子原则上也会形成附近能阶。位错对半导体性能影响很大,但目前只对金钢石结构的硅、锗中的位错了解得较多一点。
2. 缺陷对载流子数目的影响
点缺陷使能带的禁带区出现附加能阶,位错本身又会起悬浮键作用,它起着施主或受主的作用,另外位错俘获电子使载流子数目减少,所以半导体中实际载流子数目减少。
由于晶体缺陷对半导体材料的影响,故可以在半导体材料中有以下应用
1. 过量的Zn 原子可以溶解在ZnO晶体中,进入晶格的间隙位置,形成间隙型离子缺陷,同时它把两个电子松弛地束缚在其周围,对外不表现出带电性。但这两个电子是亚稳定的,很容易被激发到导带中去,成为准自由电子,使材料具有半导性。
2. Fe3O4晶体中,全部的Fe2+离子和1/2量的Fe3+离子统计地分布在由氧离子密堆所构成的八面体间隙中。因为在Fe2+—Fe3+—Fe2+—Fe3+—……之间可以迁移,Fe3O4是一种本征半导体。
3. 常温下硅的导电性能主要由杂质决定。在硅中掺入VA族元素杂质(如P、As、Sb等)后,这些VA族杂质替代了一部分硅原子的位置,但由于它们的最外层有5个价电子,其中4个与周围硅原子形成共价键,多余的一个价电子便成了可以导电的自由电子。这样一个VA族杂质原子可以向半导体硅提供一个自由电子而本身成为带正电的离子,通常把这种杂质称为施主杂质。当硅中掺有施主杂质时,主要靠施主提供的电子导电,这种依靠电子导电的半导体被成为n型半导体。
4. 在BaTiO3陶瓷中,人们常常加入三价或五价杂质来取代Ba2+离子或Ti4+离子来形成n型半导瓷。例如,从离子半径角度来考虑,一般使用的五价杂质元素的离子半径是与Ti4+离子半径(0.064nm)相近的,如Nb5+=0.069nm,Sb5+=0.062nm,它们容易替代Ti4+离子;或者使用三价元素,如La3+=0.122nmCe3+=0.118nm,Nd3+=0.115nm,它们接近于Ba2+离子的半径(0.143nm),因而易于替代Ba2+离子。由此可知,不管使用三价元素还是五价元素掺杂,结果大都形成高价离子取代,即形成n型半导体。
(5)位错对铁磁性的影响
只有过渡族元素的一部分或其部分化合物是铁磁性材料。物质的铁磁性要经过外磁场的磁化作用表现出来。能量极小原理要求磁性物质是由磁矩取向各异的磁畴构成。一般说来加工硬化降低磁场H的磁化作用,磁畴不可逆移动开始的磁场Ho (起始点的磁场强度)升高,而加工则使物质的饱和磁化强度降低。
三. 总结
缺陷对物理性能的影响很大,可以极大的影响材料的导热,电阻,光学,和机械性能,极大地影响材料的各种性能指标,比如强度,塑性等。化学性能影响主要集中在材料表面性能上,比如杂质原子的缺陷会在大气环境下形成原电池模型,极大地加速材料的腐蚀,另外表面能量也会受到缺陷的极大影响,表面化学活性,化学能等等。其实正是有了缺陷金属材料才能有着我们需要的良好的使用性能,比如人工在半导体材料中进行掺杂,形成空穴,可以极大地提高半导体材料的性能。总之影响非常大,但是如果合理的利用缺陷,可以提高材料某一方面的性能。
关于 岩样的材料强度及缺陷程度 和 岩石的三轴抗压强度与哪些因素有关? 的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 岩样的材料强度及缺陷程度 的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于 岩石的三轴抗压强度与哪些因素有关? 、 岩样的材料强度及缺陷程度 的信息别忘了在本站进行查找喔。